Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New compound effectively treats fungal infections

22.06.2007
Researchers unravel how a powerful new compound kills fungi by blocking protein synthesis
A new mechanism to attack hard-to-treat fungal infections has been revealed by scientists from the biotech company Anacor Pharmaceuticals Inc., California, and the European Molecular Biology Laboratory (EMBL) outstation in Grenoble, France. In the current issue of Science they describe how a new compound kills fungal pathogens by blocking an enzyme crucial for their protein synthesis.

The human body is home to many different kinds of fungi. While the majority normally do not harm us, some fungi can cause unpleasant infections of skin, nails or lungs.

“We have discovered a new compound that has the potential to treat common chronic nail infections caused by fungi,” says Dickon Alley, researcher at Anacor Pharmaceuticals. “The compound, called AN2690, kills fungi by blocking their ability to make proteins.”

... more about:
»AN2690 »RNA »enzyme »fungal »infections »synthesis »tRNA

AN2690 interferes with an enzyme called leucyl-tRNA synthetase, which is involved in translation, one of the last steps in the process of turning a gene’s DNA code into a protein. The process begins when the cell makes an RNA version of the gene’s code, called messenger RNA. Ribosomes, the cell’s protein synthesis machinery, then translate the messenger RNA into protein by stitching together the amino acids in the order specified by the message. This requires the help of molecules called tRNAs, which link the code of the messenger RNA to the correct amino acid.

Leucyl-tRNA synthetase is one of a group of enzymes called aminoacyl-tRNA synthetases that attach the correct amino acid to each tRNA. Some of these enzymes have two main functional parts, or active sites: a site that links the amino acid to the tRNA, and a separate editing site that proofreads this process and removes wrongly added amino acids.

To find out how exactly AN2690 blocks leucyl-tRNA synthetase Stephen Cusack, Head of EMBL Grenoble, and his team generated crystals of the enzyme bound to tRNA in the presence of AN2690. Examining them with the high-intensity X-ray source at the European Synchrotron Radiation Facility, Cusack and his colleagues found that AN2690 sticks in the editing site of the enzyme where it makes a very strong bond to the end of the tRNA, trapping it on the enzyme. This stops the enzyme working and thus blocks protein synthesis, killing the fungal cell. The mechanism crucially depends on a boron atom that is part of AN2690, which is needed to link the compound to the tRNA. It is the first time that scientists describe such a mechanism, suggesting boron containing compounds as a promising new class of drug candidates.

“Now that we know how AN2690 works, the same approach could be adapted to target other aminoacyl-tRNA synthetases with editing sites and also other pathogenic microbes,” concludes Cusack. “We are now working towards finding related antibacterial compounds that could help counter the problem of antibiotic resistance.”

Anna-Lynn Wegener | alfa
Further information:
http://www.embl.org/aboutus/news/press/2007/22jun07/

Further reports about: AN2690 RNA enzyme fungal infections synthesis tRNA

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>