Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Capsules against diabetes

22.06.2007
There is renewed hope for treatment of diabetes type 1 with gel capsules: Biotechnologists at The Norwegian University of Science and Technology (NTNU) have developed a new type of alginate capsule that could solve the problem of the body’s immune system recognizing and attacking alien, implanted insulin cells.

If this becomes a medical reality, diabetes patients with transplanted insulin-producing donor cells in their abdominal cavity do not have to take immunosuppressants for the rest of their life – medication which involves a high risk of infections and cancer.

Researchers also envision using the innovation in the treatment of certain types of cancer.

The Trondheim Capsule

... more about:
»Diabetes »alginate »capsule »immune

The new capsule, called TAM (the Trondheim Alginate Microcapsule), is designed with a view to camouflage the insulin-producing cells to the body’s immune system.

”If the capsule is to function well, it needs to be suitably porous so that it allows nutrients to enter the insulin cells while insulin is transported out. It must be suitably small, and it must be stabile so it doesn’t swell and gradually break. We seem to be in the process of solving all these challenges," says Research Fellow Yrr Mørch from the Capsule Group at NTNU.

Her research environment, headed by Professor Gudmund Skjåk-Bræk, participates in an international cooperation called «The Chicago Project». The aim is to find a functional cure for diabetes type 1.

A solution around the corner

Alginate capsules with insulin cells are currently not used in the treatment of diabetes patients, even though the idea is far from new. As early as in the 1990s, an American had an alginate capsule with insulin cells produced in Trondheim implanted.

It appeared to be a success, but how well the old capsule actually functioned remained unanswered as the American had also had a kidney transplant and already took immunosuppressants.

Animal experiments later revealed that the capsule did not function satisfactorily. The main reason being polylysine, a substance used on the capsule’s outside to improve stability and make it less porous. This substance is toxic and triggers the immune system, which results in immune cells attaching to the capsule surface and hampering the diffusion of substances in and out of the capsule. The result is cell death.

Thorough basic research and several doctoral degrees later, the solution to the immune problem related to the transplant of capsules with insulin producing cells appears to be close. However, many years are likely to pass before the method can be used in patients. Stay updated on the development at: www.ntnu.no/forskning/alginatkapsler

Tailored alginate

Alginate is a long sugar molecule that stiffens kelp in the same way as cellulose makes the trees stand upright. Kelp has been researched at NTNU/former NTH for 50 years. Several of the alginate’s secrets are therefore revealed, including its structure.

Researchers have managed to isolate, clone and produce in large scale an enzyme involved in the construction of the alginate in different ways. That means that the researchers themselves can build the nanostructure of alginate so the molecule gets the desired properties.

Researchers envision tailoring different alginate capsules for individual use in the near future.

By Nina Tveter/Gemini

Yrr Mørch | alfa
Further information:
http://www.ntnu.no

Further reports about: Diabetes alginate capsule immune

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>