Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover 'acquired' DNA key to certain bacterial infection

19.06.2007
Researchers announced this week the discovery of a mechanism by which Mycobacterium avium – a bacterium which can result in serious lung infections and is prevalent in emphysema and AIDS patients among others – infects tissue cells or “macrophages” and thus compromises the body’s immunity.

Results of the study, led by researchers at Oregon State University, will be published online this week in the Proceedings of the National Academy of Sciences. Other co-authors were from the University of Nebraska.

The key to the bacterium’s ability to enter environmental amoebas – and ultimately humans – is an “island” of genetic material acquired through evolution from another bacterium, according to Luiz E. Bermudez, a professor of biomedical sciences in OSU’s College of Veterinary Medicine and an author of the study.

“Without these acquired genes, the bacterium is very inefficient in infecting environmental amoeba, which is the environmental host,” Bermudez said. “In fact, its efficiency is close to zero. But with this ‘island’ of acquired genetic material, the bacterium finds a way to get inside the cells and it takes control, not the phagocyte.”

... more about:
»Mycobacterium »amoeba »avium »bacterium

Phagocytes are cells that engulf and digest pathogens and cellular debris, and in humans serve as the body’s initial immune response.

The researchers did not find a similar island of acquired genetic material in two similar bacteria, Mycobacterium tuberculosis and Mycobacterium paratuberculosis, which causes Johne’s disease.

M. avium exists in the environment and is thought to infect humans when the infected environmental hosts – amoebas – are inhaled or swallowed.

Incidence of M. avium as a cause of syndromes may be decreasing because of changes in treatment for HIV-infected patients, according to the Centers for Disease Control and Prevention, which estimates that 1 out of 100,000 persons may be affected. However, CDC also notes that the bacterium’s resistance to antibiotics – already a problem – may be increasing. In contrast, the incidence of lung infection in patients with chronic lung diseases and cystic fibrosis is increasing.

Understanding the mechanism by how M. avium penetrates the macrophage and infects humans may eventually lead to interventions that can prevent, or at least, reduce the chance of infections, though Bermudez cautioned that it is early in the process.

“We still don’t know what most of the individual genes do,” he said, “and none of the DNA sequences match those in known databases.”

The researchers did discover that one of the genes provides coding for a protein that targets action in the host cell, which may help the bacterium survive in the macrophage.

Bermudez said the researchers learned the genetic “island” was acquired from another bacterium because of its unique nucleotide structure, which differs from its Mycobacterium cousins. Such evolution likely took place over thousands of years, he pointed out, and may have come from a pathogen which also has the ability to infect environmental amoeba.

Luiz Bermudez | EurekAlert!
Further information:
http://www.oregonstate.edu

Further reports about: Mycobacterium amoeba avium bacterium

More articles from Life Sciences:

nachricht Colorectal cancer risk factors decrypted
13.07.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht Algae Have Land Genes
13.07.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>