Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify fifth gene responsible for Joubert syndrome

13.06.2007
An international study by researchers at Seattle Children’s Hospital Research Institute, the University of Washington School of Medicine, and Radboud University in Nijmegen, Netherlands has identified a new genetic cause for Joubert syndrome (JS).

Joubert syndrome is an inherited condition that affects development of the cerebellum and brainstem, the structures in the brain that coordinate movements and regulate basic functions such as breathing, swallowing, heart rate and consciousness. The study, published in the June 10, 2007 issue of Nature Genetics, confirms key information about the genetic changes that cause JS and cellular structures called cilia, conclusively placing JS in a class of recently identified ciliopathic conditions. Though the disease is statistically rare and four other genetic markers have been previously identified, researchers believe these findings are important.

Joubert syndrome can result in developmental delay, poor physical coordination, irregular breathing, visual impairment, kidney failure and extra digits. Diverse symptoms may occur making diagnosis difficult, though patients typically feature a characteristic configuration of the brainstem and cerebellum on magnetic resonance imaging (MRI), where the abnormally developed brain stem resembles the shape of a molar tooth. The researchers’ discovery of mutation in the gene (RPGRIP1L) now paves the way for definitive DNA testing that can more conclusively diagnose JS in some patients, and also identify asymptomatic carriers who might unknowingly pass the condition to their future children.

In addition to identifying a fifth gene for JS, the study also sheds light on the role of cilia in this disease and possibly others. Primary cilia are tiny projections on cell surfaces that allow the inside of cells to communicate with their outside environment. Recent research has found that defects in cilia function lead to various newly identified syndromes called ciliopathies. The paper describes a genetic change that prevents interaction between two particular cilia proteins, presumably disrupting cilia function and causing JS. This links JS to other diseases such as Leber congenital amaurosis, Senior-Loken syndrome and nephronophthisis, the most common genetic cause of kidney failure in children. All these conditions share disruptions in the protein networks of cilia. Further, this study exemplifies the power of international collaborative research, an increasingly important trend in biomedical discoveries.

... more about:
»Joubert »Kidney »Syndrome »cilia »identified

Study findings add substantially to the way JS and other ciliopathies will be identified and understood. “By discovering this gene, we’re on the forefront of research changing how we think about brain, retina and kidney development,” said Dr. Dan Doherty, co-author on the study, from the Division of Genetics and Developmental Medicine at Seattle Children’s Hospital Research Institute. “These advances will lead to better understanding of both normal and abnormal brain development and eventually improved treatments for a variety of diseases.”

Ongoing genetic research at Seattle Children’s Hospital Research Institute will look for additional mutations responsible for Joubert syndrome, and continue to study how genes work together to build and maintain the brain, retina and kidney.

Teri Thomas | EurekAlert!
Further information:
http://www.seattlechildrens.org
http://www.joubertsyndrome.org
http://www.nature.com/ng/journal/vaop/ncurrent/full/ng2069.html

Further reports about: Joubert Kidney Syndrome cilia identified

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>