Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCR Biologists Unravel the Genetic Secrets of Black Widow Spider Silk

13.06.2007
Disclaimer
The following press releases refer to a selection of the upcoming articles in PLoS ONE. The releases are provided by the article authors and/or their institutions. Any opinions expressed in these releases or articles are the personal views of the contributors, and do not necessarily represent the views or policies of PLoS. PLoS expressly disclaims any and all warranties and liability in connection with the information found in the releases and articles and your use of such information.

Biologists at the University of California, Riverside have identified the genes, and determined the DNA sequences, for two key proteins in the “dragline silk” of the black widow spider – an advance that may lead to a variety of new materials for industrial, medical and military uses.

The black widow spider’s dragline silk is a standout compared to other spider silks because of its superior strength and extensibility, a combination which enables black widow dragline silk to absorb enormous amounts of energy. These properties suggest that synthetically-produced silk might find applications as diverse as lightweight super-strong body armor, components of medical devices and high-tech athletic attire.

The researchers – Associate Professor of Biology Cheryl Hayashi and postdoctoral researchers Nadia Ayoub and Jessica Garb – report their findings in the June 13th issue of the online, open-access journal PLoS ONE, published by the Public Library of Science (PLoS). In the article, they describe their work to identify the genes encoding the two key proteins, named MaSp1 and MaSp2, and determine the genes’ complete DNA sequences.

... more about:
»DNA sequence »PLoS »dragline »key protein

There are currently no products on the market based on the dragline silk of spiders. “There’s nothing quite as good yet as natural dragline silk, but we should get a lot closer now that we have the full genetic recipe,” said Hayashi.

With the ingredients and their genetic blueprint now known, it may be possible to synthetically produce the proteins by inserting the genetic sequences into host organisms such as bacteria, plants or animals, she said. Once the pure proteins are harvested, a manufacturing challenge will be spinning them into silk fibers that have the same remarkable properties as spider spun silk. But several advances have recently been made in artificial spinning methods.

When spiders manufacture dragline silk, their silk glands produce a “gooey” slurry of the proteins needed, which are transported to the spinneret through a duct where the proteins interact and align to form the silk strands.

“The production of artificial silk is not quite there yet,” Hayashi said. “Now, with the full length genes known and as we learn more about theses two proteins, hopefully we will have a better shot at mimicking nature.”

Spider silks have some of the best mechanical properties of any known natural fibers, thus they are being considered in the improvement of a variety of products including surgical microsutures and specialty ropes. Dragline silk – just one type of the seven different silks that an individual spider produces – are used by spiders as the structural foundation of their webs and to support their body weight as they move about. The dragline silk of black widows is one of the strongest and toughest spider silks identified thus far.

Hayashi’s laboratory utilized specialized instrumentation in the Core Instrumentation Facility of the UCR Institute for Integrative Genome Biology in their quest to identify the genes that encode the proteins MaSp1 and MaSp2, then to determine the full genetic sequences. The project lasted more than a year and was funded by the Army Research Office and the National Science Foundation.

Iqbal Pittalwala | alfa
Further information:
http://www.plosone.org
http://www.plosone.org/doi/pone.0000514

Further reports about: DNA sequence PLoS dragline key protein

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>