Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Snake venom as medication?

11.06.2007
A chemist at the Vienna University of Technology (TU Vienna) is looking for unusual structures in snake venom and plans to prove their medical effectiveness. What in the 1950s led to the development of Captopril, a drug for the treatment of hypertension, is being continued in an interesting new chapter with the analysis of venom from South American pit vipers and tropical rattlesnakes.

"We receive the snake venom as a yellow crystalline powder in ampules directly from the 'Instituto Butantan' (http://www.butantan.gov.br/) in São Paulo, Brazil. That is a well-known scientific institution, also popular with tourists, which studies some of the most poisonous snake species in the world," explains Martina Marchetti, assistant professor at the Institute for Chemical Technologies and Analytics at the Vienna University of Technology (TU Vienna).

Her investigations focus on the venoms of four different pit vipers (Bothrops) as well as a tropical rattlesnake (Crotalus durissus terrificus). All five species are native to South America. They are among the most aggressive snake varieties there. Every year in South America, 2.5 million people are bitten by snakes. About 100,000 die as a result.

Marchetti analyzes the snake venoms by various methods. She and her coworkers use lab-on-a-chip technology to determine the composition of the toxins and analyze peptide chains (linear sequences of amino acids). The structures of individual members of these chains are then analyzed using tandem mass spectrometry. Two-dimensional gel electrophoresis offers another option for separating samples by molecular weight and pH. According to Marchetti, "Not every snake venom is the same. Time and again we encounter unusual new structures. The goal of our research is to find out why individual components of the venom act in a particular way and what they may have to offer to the pharmaceutical industry." A deliberately administered toxic effect in the right amount can actually be beneficial to human health. Snake toxins have a very broad field of potential use, including antibacterial applications, cell growth inhibition, nerve stimulation, blood thinning and clotting. Their effects are also being tested for the treatment of Alzheimer's disease.

As a result of proteome research, which has become popular in recent years, a number of new analytical methods have been developed. Combinations of these methods allow to uncover clues in order to solve the riddle of the medical effectiveness of snake venom. Of course, another goal is to develop effective antivenoms, which, according to Marchetti, "might some day be available to take along in tablet form."

Her investigations have been conducted in collaboration with Walter Welz at the Johannes Kepler University in Linz. Researchers first noticed the pharmacological effectiveness of snake venoms in the process of developing antisera. Such investigations in the 1950s resulted in the development of the hypertension drug Captopril, for which the structural information from a peptide (protein) isolated from snake venom served as an archetype.

Daniela Ausserhuber | alfa
Further information:
http://www.tuwien.ac.at/index.php?id=3880
http://www.tuwien.ac.at/aktuelles/news_detail/article/4016/16/

Further reports about: Marchetti analyze effectiveness investigations

More articles from Life Sciences:

nachricht During HIV infection, antibody can block B cells from fighting pathogens
14.08.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>