Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moss genes provided fuse for plant life explosion

11.06.2007
Scientists from the John Innes Centre have identified the genes that control the development of root hairs on plants. Published in the journal Science, Professor Liam Dolan reports that these genes are also found in moss, a finding that changes our understanding of how the plants we see today evolved over 400 million years ago.

Plants use roots to anchor themselves, and to absorb nutrients. Root hairs are single cells that grow from the roots and greatly increase the root’s surface area. The researchers identified a pair of genes that are required for root hairs to grow. When these genes were turned off, plants produced hairless roots.

Not all plants have roots. Evolutionarily ancient plants like mosses instead grow cells called caulonema and rhizoids. Caulonemal cells increase the surface area for nutrient absorption, and rhizoids provide anchorage. The scientists found that the genes that control root hair growth are very similar to the genes that regulate the development of caulonema and rhizoids in the moss Physcomitrella patens. In fact, they were able to replace the genes they turned off in plants with the equivalent genes from moss, and produce hairy roots. However, caulonema and rhizoids are not the same as root hairs; the major difference being that root hairs are diploid, having two copies of each chromosome, whilst the moss cells have one (haploid).

The number of chromosomes represents one of the major differences between mosses and other land plants. Moss exists with one chromosome for the majority of its lifecycle; only during its reproductive stage does it have two copies of its chromosomes. The plants that evolved from these organisms have pairs of chromosomes for the majority of their life cycle. With this change in the dominant part of the life cycle came an enormous increase in the size and diversity of plants known as the Devonian explosion, which started around 400 million years ago. The great variety of plant life that we see today evolved during this period of time. The invasion of the land by these plants fundamentally changed the existing ecosystems, and brought about pronounced climate change.

... more about:
»Chromosome »genes »rhizoids

This study, involving collaboration with the University of Lausanne, provides some information on the genetic basis of this Devonian explosion. It shows that genes from one stage in the life cycle were recruited by their descendants into another part of the life cycle. The development of root hairs helped the evolution of larger plants by increasing their nutrient uptake ability and anchorage. “These results give us a model for the genetic changes that underpinned the dramatic changes in plant stature that occurred during Devonian explosion 400 million years ago. We are now getting an insight in to the genetic fuse to that bang which had such dramatic climatic consequences” said Professor Dolan.

Zoe Dunford | alfa
Further information:
http://www.bbsrc.ac.uk
http://www.jic.ac.uk

Further reports about: Chromosome genes rhizoids

More articles from Life Sciences:

nachricht During HIV infection, antibody can block B cells from fighting pathogens
14.08.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>