Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hormone helps mice 'hibernate,' survive starvation

06.06.2007
A key hormone enables starving mice to alter their metabolism and “hibernate” to conserve energy, revealing a novel molecular target for drugs to treat human obesity and metabolic disorders, UT Southwestern Medical Center researchers have found.

The starvation-fighting effects of the hormone, called fibroblast growth factor 21 (FGF21), are described for the first time in a study appearing online today in Cell Metabolism.

FGF21, triggered in starving mice by a specific cellular receptor that controls the use of fat as energy, spurs a metabolic shift to burning stored fats instead of carbohydrates and induces a hibernation-like state of decreased body temperature and physical activity, all geared to promote survival.

“This hormone changes the metabolism and behavior of mice in the face of inadequate nutrition,” said Dr. Steven Kliewer, professor of molecular biology and pharmacology at UT Southwestern and the study’s senior author. “We hope to manipulate this hormone-receptor signaling pathway to craft the next generation of drugs to combat human obesity and other conditions.”

... more about:
»FGF21 »Kliewer »PPAR-alpha »starvation

Mammals on the brink of starvation normally shift their main fuel source from carbohydrates to stored fats, promoting survival during foodless periods. Some mammals also enter a hibernation-like state of regulated hypothermia, known as torpor, which conserves energy.

The molecular driver behind this reaction to starvation, however, had been unknown.

To find an answer, UT Southwestern researchers and other scientists examined potential molecular cues and cellular interactions at play during starvation and fasting.

They focused on a nuclear receptor – a protein that turns genes on and off in the body – called peroxisome proliferator-activated receptor alpha, or PPAR-alpha, which is known to control the use of fat as energy. Starving mice without PPAR-alpha become hypoglycemic and quickly die.

In analyzing the molecular impact of PPAR-alpha in mice, the researchers found that it stimulates production of FGF21, a member of a hormone family that has been shown to lower blood glucose levels in diabetic and obese mice.

FGF21, in turn, stimulates the use of stored fats as energy and causes torpor. In properly fed mice, FGF21 is not normally active; however, when the researchers introduced FGF21 into these mice, the animals’ metabolism changed.

“When mice were given this hormone, their metabolism appeared as if they were starved, even after they had just eaten,” said Dr. Kliewer.

Because limiting food consumption is known to have a range of beneficial effects, such as lowering blood pressure, cholesterol and glucose levels in the blood, Dr. Kliewer is interested in understanding how FGF21 impacts these processes.

“We want to see if we can get some benefits of eating less without actually eating less,” he said.

Manipulating the PPAR-alpha-FGF21 signaling pathway might ultimately prove to be a vital part of the ongoing search for new therapies for human obesity and other metabolic conditions, Dr. Kliewer said.

“Given that the PPAR-alpha receptor already is the target of drugs that work to boost high-density lipoproteins, or the ‘good’ cholesterol, and reduce the amount of fat in the blood, we believe this new pathway may lead to a new class of drugs that will impact many human conditions,” he said.

Cliff Despres | EurekAlert!
Further information:
http://www.utsouthwestern.edu

Further reports about: FGF21 Kliewer PPAR-alpha starvation

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>