Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An 'elegant' idea proves its worth 25 years later

31.05.2007
The simple notion of copying the body’s own natural "waste disposal" chemistry to mop up potentially toxic nitrogen has saved an estimated 80 percent of patients with urea cycle disorders --- most of them children – according to a report in this week’s New England Journal of Medicine summarizing a quarter century of experience with the treatment.

The effectiveness of sodium phenylacetate and sodium benzoate, two chemicals the body already makes to carry nitrogen for disposal in urine "just knocked my socks off from the moment we first tried them," recalls Saul Brusilow, M.D., professor emeritus of pediatrics at Hopkins who first had the notion to use the drugs. "In all my years I never came across another disease where patients come in near-comatose and you stick a needle in them and lo and behold, they wake up—just like that. It was just astonishing," he says.

"His elegant idea was to give patients chemicals they already make in small amounts in large doses to make up for the missing urea cycle enzyme they inherited," says Ada Hamosh, M.D., M.P.H, clinical director of the McKusick-Nathans Institute of Genetic Medicine. "Sodium phenylacetate and sodium benzoate already know how to eliminate nitrogen in urine, so having more in the body carries more nitrogen out and reduces the toxic effects of excess nitrogen accumulation."

Excess nitrogen yields ammonia, which is poisonous and in the case of urea cycle disorders, causes brain damage, retardation, coma and even death.

... more about:
»disorder »nitrogen »sodium »urea

Despite the immediate clinical success of the treatment, the drug combination was finally approved by the U.S. Food and Drug Administration only in 2005.

Brusilow, Hamosh, and colleagues at Stanford University, University of Minnesota, Thomas Jefferson University and the Medical College of Wisconsin looked back at 299 urea cycle disorder patients with a total of 1,181 hyperammonemia "episodes" from 118 hospitals around the United States from August 1980 until March 2005.

The regimen consisted of high-dose intravenous sodium phenylacetate and sodium benzoate for two hours followed by "maintenance infusions" until blood ammonia levels were normal. The patients’ overall survival rate was 84 percent, and 96 percent survived episodes of severe ammonia poisoning.

An estimated one in 40,000 live births is a child with a urea cycle disorder, according to Hamosh, who says early and accurate detection can now assure prompt treatment.

"We’re teaching all medical students at Hopkins to consider hyperammonemia and immediately do blood tests when they see a combative, lethargic or comatose newborn or child," she says. "The longer the hyperammonemia lasts, the higher the risk for brain damage."

"This is a happy story," says Brusilow. "It isn’t too often in genetic medicine that we can intuitively develop a treatment with already available chemicals and save lives."

Audrey Huang | EurekAlert!
Further information:
http://www.jhmi.edu

Further reports about: disorder nitrogen sodium urea

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>