Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parkinson’s Protein Protects Neurons from Stress Induced Cell Death:“Parkin” Activates Survival Mechanism of Neuronal Cells

22.05.2007
Parkinson’s disease, also known as shaking palsy, is one of the most frequent diseases of the nervous system. Cell death of neurons in specific regions of the midbrain is leading to the onset of the disease. However, the the causes for this extensive cell death are unknown.

Especially in cases of early manifestation of the disease mutations in the so-called parkin gene are of great significance. In a collaborative effort the groups of Dr. Konstanze Winklhofer (Ludwig-Maximilians-University Munich) and Dr. Daniel Krappmann (GSF – Research Center for Environment and Health, Neuherberg) have now been able to reveal a novel function for the Parkin protein.

The scientists could show that Parkin prevents the induction of neuronal cell death. As reported in the “Journal of Neuroscience“, the protein activates a survival mechanism which had been known for its prominent role in immune response.

Usually, Parkinson’s disease occurs after the age of 50 and in Germany about 400,000 people are affected. It is characterized by a decline of neurons in the so-called Substantia Nigra, a structure in the midbrain that produces dopamine. The resulting deprivation of this messenger substance causes symptoms like muscular tremor at rest and restricted mobility and even complete immobility. Characteristic deposits are found in the brain, the Lewy corpuscles.

... more about:
»Cell »Parkin »Parkinson »Winklhofer

Little is known about the causes of Parkinson’s disease. It has only been known for a few years that ten to fifteen per cent of all cases are associated with mutations in certain genes.

“The parkin gene is of special interest here”, says Winklhofer. “One effect of its inactivation is that the Parkin protein loses its physiological function. This genetic defect plays a role for hereditary Parkinson’s disease, which may lead to an early onset of the disease.”

However, inactivation of the Parkin protein could also contribute to sporadic forms of the disease. In these cases massive oxidative stress probably results in misfolding and aggregation of the protein. “Interestingly, misfolding of Parkin proteins has recently been observed in the brain of patients with sporadic Parkinson’s disease”, Winklhofer reports.

The scientists could now show in their study that Parkin protects the neuronal cells by mediating the activation of the nuclear protein NF-?B (“Nuclear Factor-kappaB“). This protein is known for triggering a survival programme in many human cells, which prevents cell death under stress conditions. The experiments indicate that mutations in the parkin gene result in an impaired activation of NF-?B.

“This, however, promotes an enhanced susceptibility of neurons to stress-induced cell death”, says Winklhofer. “Further studies will now have to show whether these findings about the function of Parkin in the activation of cellular survival programmes can contribute to the development of new strategies for the treatment of Parkinson’s patients.”

Michael van den Heuvel | alfa
Further information:
http://www.gsf.de/neu/Aktuelles/Presse/2007/parkinson_en.php

Further reports about: Cell Parkin Parkinson Winklhofer

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>