Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chromosomes of Genghis Khan

21.05.2007
Approximately 16 million Asian men can consider themselves to be Genghis Khan’s descendants, but there are no such men among the Russian population. These conclusions were made by Russian geneticists and their Polish colleagues, who had investigated Y-chromosomes with representatives of 18 nations of Northern Eurasia.

Discussions on Genghis Khan’s offsprings began about three years ago when foreign researchers (Zerijal and joint authors) published findings on Y-chromosome variability with 2,123 inhabitants of different regions in Asia, except for its Russian part. The researchers discovered a whole cluster of closely-related lines, which fanned from a common ancestor.

The investigations proved that this cluster originated from Mongolia about a thousand years ago, and its distribution coincided surprisingly with the boundaries occupied by the Mongol Empire at that time. Based on this coincidence, the researchers have assumed that the Y-chromosomes described by them belonged to Genghis Khan and his offsprings. Representatives of the Genghiside dynasty, due to their social status, had a lot of opportunities to leave posterity, and, to all appearances, broadly enjoyed their advantages. Russian and Polish researchers continued the search for the Genghisides in practically non-investigated territories of Northern Eurasia.

The Mongolian State was established in 1206 as a result of Mongolian tribes consolidation by Genghis Khan, it broadened significantly in the future having absorbed the territory of China (Great Khan ulus), Central Asia (Chagatai ulus), Iran (Ilkhan State) and Russia (Golden Horde). The power of khans of the Golden Horde, founded by Batu Khan, Genghis Khan’s grandson, embraced the territory of a significant part of contemporary Russia (except for Eastern Siberia, Far East and regions of ultima Thule), Northern and Western Kazakhstan, Ukraine, part of Uzbekistan (Khoresm) and Turkmenia.

... more about:
»Genghis »Genghiside »Mongol »Mongolia »Y-chromosome

The geneticists investigated Y-chromosomes of 1,437 men-representatives of 18 ethnic groups in that territory: Altai Kazakhs, Altai-Khizhis, Teleuts, Khakasses, Shor, Tuvinians, Todjins, Tofalars, Soyotes, Buryats, Khamnigans, Evenks, Mongolians, Kalmyks, Tajiks, Kurds, Persians and Russians. The researchers discovered a cluster of male lines possessing a common ancestor, supposedly Genghis Khan, the frequency of the “ancestry” Y-chromosome variant being the highest. The largest share of the Genghisides fell on Mongolia (about 35 percent). In the Russian population, the highest number of the Khan chromosome carriers are among the Altai Kazakhs - 8.3 percent. From 3.4 to 1.7 percent of the Genghisides are also found among the Altai people, Buryats, Tuvinians and Kalmyks.

The researchers point out that despite such detailed investigation of ethnic groups in Southern Siberia, the “Genghiside” cluster was discovered only in the populations boundary to Mongolia, where from the Mongol Empire originated in 1206. Russian principalities were in the Golden Horde allegiance since 1248 through 1480. Nevertheless, men from the Genghis Khan clan left no genetic trace in Russia. The researchers hope that further investigation of the Y-chromosome variability will allow to significantly extend our knowledge about evolution and history of Russian ethnic groups formation and about the origin of individual clans making part of them.

Nadezda Markina | alfa
Further information:
http://www.informnauka.ru

Further reports about: Genghis Genghiside Mongol Mongolia Y-chromosome

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>