Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New channel built

13.03.2002


Hinge benefits: ions pour through this synthetic chloride channel


Chemists copy from cells to make a tunnel for salt

Chemists have finally achieved what every human cell can do. They have designed and built from scratch a gate for electrically charged chlorine atoms to pass through1.

George Gokel and colleagues at Washington University in St Louis, Missouri, based their gate on biological proteins that transport chloride ions from one side of our cell membranes to the other. Like these, the synthetic channel can be opened and closed by applying a voltage. How this happens is not clear, even in natural ion channels.



In nature, voltage regulates ion flow to control how salty cells become. If there are more chloride ions on one side of a membrane than the other, the imbalance of electrical charge sets up a voltage across the membrane that can start or stop ions passing.

Cells use ion channels to produce electrical signals such as nerve impulses and the muscle movements that produce the heart beat. Many channels transport only one kind of ion, sodium, say, or chloride.

Similarly, the artificial channels transport chloride ions much more effectively than other ions, such as potassium or sulphate. Gokel’s group tested them in artificial particles called liposomes, which are hollow shells with walls like real cell membranes.

Several different types of protein-based chloride channel in the human body serve functions ranging from salt uptake to muscle contraction. Genetic mutations that make channels faulty are linked to heritable diseases such as cystic fibrosis and some muscle and kidney complaints.

Artificial chloride channels might one day serve as drugs against such diseases, but that’s a distant goal. At the moment, Gokel and his colleagues are simply trying to build simple molecules that can do the same job as real ion channels. Another motivation is that natural and synthetic ion transporters can act as antibiotics.

Channel tunnel

Cell membranes have an oily inside edge that repels water, so water-soluble substances such as ions need help getting across. Protein ion channels are embedded in a membrane, creating a kind of tunnel that lets ions through.

The new synthetic chloride channel tries to copy this. The molecule has a fatty, oil-soluble tail and a protein-like, ion-transporting head. The fatty tail anchors it in the membrane. The head contains a string of seven amino acids, like those that make up natural chloride channels. In particular, an amino acid known as proline is in the middle of the sequence.

Gokel’s team think that the proline is the hinge-like apex of an arch-shaped structure, and that two prolines stick together in the membrane to form a pore just wide enough for a chloride ion to pass through.

References

  • Schlesinger, P. H. et al. SCMTR: a chloride-selective, membrane-anchored peptide channel that exhibits voltage gating. Journal of the American Chemical Society, 124, 1848 - 1849, (2002).


PHILIP BALL | © Nature News Service

More articles from Life Sciences:

nachricht How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration
14.11.2018 | Technische Universität München

nachricht NIH scientists illuminate causes of hepatitis b virus-associated acute liver failure
14.11.2018 | NIH/National Institute of Allergy and Infectious Diseases

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

NIH scientists illuminate causes of hepatitis b virus-associated acute liver failure

14.11.2018 | Life Sciences

The unintended consequences of dams and reservoirs

14.11.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>