Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Colorectal cancers use the protein “fascin” to invade the organism

14.05.2007
Colorectal cancer exploits the power of a protein called “fascin” to form metastasis at distant sites. But when secondary tumors are well established, it “fires” the protein by turning off its gene. Fascin, thus, could represent a novel target to halt the dissemination of malignant cells from the primary site to target organs, a typical behavior of metastasis.

Finding the way to inhibit either the protein or its gene activity could lead to the establishment of novel therapies aimed at controlling colorectal cancers, the second most frequent cause of tumor death in Europe after lung cancer (with some 655.000 deaths worldwide).

These results stem from a collaborative effort involving scientists from the Institut Curie in Paris, the Weizmann Institute of Science in Rehovot (Israel) and the Department of Surgery of the Technischen Universitat in Munich. The research was presented on May 12th during the first session of the Workshop on Cell Migration: From Molecules to Organisms and Diseases, an event promoted by the European School of Molecular Medicine (SEMM) and the University of Milan, in collaboration with IFOM The FIRC Institute of Molecular Oncology, and IEO – European Institute of Oncology. Venue of the Workshop is the IFOM-IEO Campus (via Adamello, 16, Milan) that was recently opened and represents to date the biggest area dedicated to the oncological research in Europe.

Fascin is a protein that serves to aggregate cellular filaments into bundles, in order to rearrange the cellular frame (called cytoskeleton) and promote the motility. In view of this capacity, several groups of scientists have tried to find a correlation between the presence of fascin and the ability to form metastasis that many tumors exhibit. So far, however, its precise role in tumor development and dissemination was little characterized. Danijela Vignjevic from the UMR144/CNRS, at Institute Curie in Paris, who presented the research at the Workshop, explained the new discovery in details: “Cancer cells become metastatic because they acquire the ability to move and to invade other tissues. This new behavior relies on sensory organelles (common to all the cells that able to move) called filopodia, that sense the environment and help the cells to decide where to go. Fascin is a key component of filopodia, and, inside the colorectal cancer cells, it represents the target of a circuitry that leads to the activation of several genes.”

... more about:
»Fascin »Protein »metastasis »represent

Among the key findings, the investigation proved that the concentration of fascin increases according to the tumor stage: in other words, as the tumor progresses fascin becomes more and more active. In vitro tests revealed that its presence promotes cells migration and invasion, and in vivo experiments confirmed its pro-metastatic power. “There is an interesting feature about this protein” pointed out Danijela Vignjevic. “After the tumor has colonized distant sites fascin is no longer active: it is as if the tumor itself recruited it for its purposes until the malignant cells have spread. When it has arrived at its final destination fascin is no longer needed”. As next goal, Vignjevic and colleagues hope to generate a transgenic mouse model for colon cancer metastasis that will provide further insight into the molecular mechanisms of this disease.

“It is tempting to speculate about some possible therapeutic intervention that could derive from this discovery” comments Giorgio Scita, leader of the Signaling regulating acting dynamics in cell motility group at IFOM, and among the Workshop organizers. “However more investigations will be needed before we can think of moving from bench to bedside”.

Francesca Noceti | alfa
Further information:
http://www.semm.it/workshop/cellmig07/

Further reports about: Fascin Protein metastasis represent

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>