Scientists develope a new model of artificial canine skin

The basic structure of skin consists of an external layer, the epidermis, and an internal layer, the dermis, separated by a basal membrane. A study of the interactions between the cell populations of the various layers is of vital importance for skin biology, but these interactions cannot be investigated adequately by means of conventional cell cultures.

Researchers at the UAB and UNIVET, in cooperation with Affinity Petcare, have developed an artificial canine skin model, very similar to normal skin, which is useful for research and which represents an alternative to the use of animals in research. The model allows the study of those illnesses which most often affect dogs’ skin without the need to use animals.

To develop this model, cells from the epidermis (keratocytes) and the dermis (fibroblasts) from samples of healthy dogs were used. The dermis cells, inserted into a collagen marix (a very common protein in skin and joints), were used as a support for the epidermis cells, which were grown on its surface and were kept in growth conditions exposed to air. The cells proliferated forming the various layers of the epidermis.

The model develops a morphological structure similar to that of canine skin. Additionally, the expression of the dermis and epidermis proteins follows the same pattern of expression as that of normal canine skin, even forming a basal membrane, which also maintains the characteristics of conventional skin.

Media Contact

Octavi López Coronado alfa

More Information:

http://www.uab.es

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors