Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanoluminescence event yields novel emissions, reactions

09.05.2007
Researchers at the University of Illinois report that a new study of mechanoluminescence revealed extensive atomic and molecular spectral emission not previously seen in a mechanoluminescence event. The findings, which appear online this month in the Journal of the American Chemical Society, also include the first report of gas phase chemical reactions resulting from a mechanoluminescence event.
Mechanoluminescence is light generated when a crystal, such as sugar or quartz, is fractured by grinding, cleaving or via other mechanical means. Sir Francis Bacon wrote about this phenomenon as early as 1605. Others have used the effect to impress, if not enlighten, others.

"You may, when in the dark frighten simple people only by chewing lumps of sugar, and, in the meantime, keeping your mouth open, which will appear to them as if full of fire," Father Giambattista Beccaria wrote in "A Treatise Upon Artificial Electricity," in 1753.

Scientists believe mechanoluminescence occurs as a result of the generation of opposite charges along the fracture plane of an asymmetrical or impure crystal. When the charges recombine the surrounding gas is ionized and emits light.

Mechanoluminescence that results from simple grinding or cleavage of a crystal can be quite weak and difficult to study. Late last year, U. of I. chemistry professor Kenneth Suslick and graduate student Nathan Eddingsaas reported in the journal Nature that a new technique, the sonication of crystal slurries, produced a much more intense mechanoluminescence than grinding. Sonication, the use of sound energy to agitate particles or other substances, causes high intensity collisions of crystal particles in liquid slurries.

The resulting mechanoluminescence is an order of magnitude brighter than that produced by grinding.

Sonication of liquids causes acoustic cavitation: the formation, growth and implosion of bubbles. This generates tremendous heat, pressure and shockwaves within the liquid that can exceed the speed of sound. Crystal particles suspended in a sonicated liquid collide and fracture, causing intense mechanoluminescence.

The new study involved the sonication of a slurry of recorcinol
(sugar) crystals in the liquid paraffin, dodecane. When nitrogen or oxygen was bubbled through the sonicated slurry, the resulting emission spectrum was more than a thousand time more intense than that produced by grinding. The researchers also saw emission lines not previously reported in a mechanoluminescence event. These peaks on the mechanoluminescence spectra are evidence of gas phase chemical reactions during the event.

"When oxygen is present, chemical reactions take place that are similar to those that occur in the production of diamond films using an electrical discharge," Suslick said. "The intense mechanoluminescence and chemical reactions produced by ultrasound give us a better understanding of mechanoluminescence, mechanochemistry and the effect of ultrasound on solids within a liquid."

Editor's note: To reach Kenneth Suslick, call 217-333-2794; e-mail:
ksuslick@uiuc.edu.

News Bureau | University of Illinois
Further information:
http://www.news.uiuc.edu/news/07/0508sonication.html

Further reports about: Emission chemical reaction mechanoluminescence produced

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>