Targeting sugar on blood vessels may inhibit cancer growth

Lung cancer is the most common cause of cancer death and an area where novel therapies to block metastasis are desperately needed, according to first author Mark M. Fuster, M.D., assistant professor in the Division of Pulmonary and Critical Care Medicine in UCSD’s Department of Medicine. Solid tumors need a network of blood vessels, or vasculature, in order to grow, and this vasculature drives metastasis. The research team, led by the paper’s principal investigator Jeffrey D. Esko, Ph.D., professor of Cellular and Molecular Medicine at UCSD, showed that modifying the action of heparan sulfate uniquely impacted the tumor vasculature, and in doing so, altered the growth rate of tumors prepared from lung carcinoma cells in the mice.

“We theorized that by targeting the sugar, heparan sulfate, we could affect angiogenesis, which is the formation of new blood vessels,” said Fuster. “In cancer, angiogenesis sustains growth as well as metastasis of tumors. An important finding was that, not only could we inhibit the growth of tumors in these mice, but that other systems that rely on endothelial growth, such as the reproductive system and wound healing, remained robust.”

Studying mouse models with a genetic alteration in an important sugar-modifying enzyme (Ndst1), the researchers saw a marked decrease in the growth of experimental carcinomas. The Ndst1 enzyme is responsible for modifying the molecular structure of a sugar called heparan sulfate. In endothelial cells, this sugar facilitates the action of several important vascular growth factors that support angiogenesis.

An antibody drug called Avastin, produced by Genentech, has been shown to block a major pro-angiogenesis molecule called vascular endothelial growth factor (VEGF), thus inhibiting the growth of vasculature. The drug has been used along with chemotherapy in humans to successfully inhibit the growth of tumors in colon and lung cancers.

“If novel drugs can be developed to target tumor heparan sulfate, we might be able to make a leap in cancer-fighting therapies, because several molecules critical to tumor endothelial growth also bind to heparan sulfate,” Fuster said. “Altering this binding would allow for suppression of a broader array of the tumor ‘fuels’ for angiogenesis, without a major effect on normal vascular function.”

The researchers hope to develop novel therapies by inhibiting endothelial heparan sulfate in the tumor environment. An example would be developing small-molecule inhibitors of Ndst1. By affecting a broad array of molecules – such as VEGF, fibroblast growth factor, platelet-derived growth factor, or others that impact angiogenesis in a variety of carcinomas – this therapy could be used to inhibit cancer growth and metastasis with fewer side effects.

Media Contact

Debra Kain EurekAlert!

More Information:

http://www.ucsd.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors