Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Targeting sugar on blood vessels may inhibit cancer growth

08.05.2007
In a study that could point to novel therapies to prevent cancer spread, or metastasis, researchers at the University of California, San Diego (UCSD) School of Medicine have targeted a sugar that supports blood vessel growth in the tumor. Their findings will be published in the May 7 on-line issue of Journal of Cell Biology.

Lung cancer is the most common cause of cancer death and an area where novel therapies to block metastasis are desperately needed, according to first author Mark M. Fuster, M.D., assistant professor in the Division of Pulmonary and Critical Care Medicine in UCSD’s Department of Medicine. Solid tumors need a network of blood vessels, or vasculature, in order to grow, and this vasculature drives metastasis. The research team, led by the paper’s principal investigator Jeffrey D. Esko, Ph.D., professor of Cellular and Molecular Medicine at UCSD, showed that modifying the action of heparan sulfate uniquely impacted the tumor vasculature, and in doing so, altered the growth rate of tumors prepared from lung carcinoma cells in the mice.

"We theorized that by targeting the sugar, heparan sulfate, we could affect angiogenesis, which is the formation of new blood vessels," said Fuster. "In cancer, angiogenesis sustains growth as well as metastasis of tumors. An important finding was that, not only could we inhibit the growth of tumors in these mice, but that other systems that rely on endothelial growth, such as the reproductive system and wound healing, remained robust."

Studying mouse models with a genetic alteration in an important sugar-modifying enzyme (Ndst1), the researchers saw a marked decrease in the growth of experimental carcinomas. The Ndst1 enzyme is responsible for modifying the molecular structure of a sugar called heparan sulfate. In endothelial cells, this sugar facilitates the action of several important vascular growth factors that support angiogenesis.

An antibody drug called Avastin, produced by Genentech, has been shown to block a major pro-angiogenesis molecule called vascular endothelial growth factor (VEGF), thus inhibiting the growth of vasculature. The drug has been used along with chemotherapy in humans to successfully inhibit the growth of tumors in colon and lung cancers.

"If novel drugs can be developed to target tumor heparan sulfate, we might be able to make a leap in cancer-fighting therapies, because several molecules critical to tumor endothelial growth also bind to heparan sulfate," Fuster said. "Altering this binding would allow for suppression of a broader array of the tumor ‘fuels’ for angiogenesis, without a major effect on normal vascular function."

The researchers hope to develop novel therapies by inhibiting endothelial heparan sulfate in the tumor environment. An example would be developing small-molecule inhibitors of Ndst1. By affecting a broad array of molecules – such as VEGF, fibroblast growth factor, platelet-derived growth factor, or others that impact angiogenesis in a variety of carcinomas – this therapy could be used to inhibit cancer growth and metastasis with fewer side effects.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

Further reports about: Angiogenesis Cancer carcinoma endothelial novel sugar vasculature vessel

More articles from Life Sciences:

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>