Antidepressants stimulate new nerve cells in adult monkeys, may have implications for humans

The results, the first from nonhuman primates, are similar to those previously seen in rodents. They suggest that creation of new nerve cells, a process known as neurogenesis, is an important part of antidepressant therapy. Researcher Tarique Perera, MD, at Columbia University, and colleagues observed changes in the number of brain cells in the dentate gyrus region of the hippocampus. The study is published in the May 2 issue of The Journal of Neuroscience.

The growth of new nerve cells in the hippocampus has been suggested as the way antidepressants work in rodents, says Eric Nestler, MD, PhD, of the University of Texas Southwestern Medical Center. “However, the clinical relevance of this action has remained controversial, in part, because of uncertainty as to whether similar neurogenesis occurs in humans,” he says. “This finding further supports the potential clinical relevance of changes in neurogenesis seen in rodent models.”

Perera and the team treated a group of monkeys with electroconvulsive shock (ECS), an animal version of the highly effective clinical antidepressant electroconvulsive therapy. They saw an increase in new nerve cells in the hippocampus. Over four weeks, a majority of these cells became mature neurons.

These brain changes were not a response to tissue damage, Perera says, because no evidence of increased cell death was found in the ECS treated animals. In fact, the researchers found that the ECS treatments increased production of a protein (BCL2) that protects neurons from damage.

“These findings support the hypothesis that induction of neurogenesis is a necessary component in the mechanism of action of antidepressant treatments,” Perera says.

Media Contact

Sara Harris EurekAlert!

More Information:

http://www.sfn.org

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors