Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Queen’s research shows diabetes damages sperm and may affect fertility

04.05.2007
Sperm from diabetic men have greater levels of DNA damage which may affect their fertility, research has found.

In the first study to compare the quality of DNA in sperm from diabetic and non-diabetic men, researchers at Queen’s University Belfast showed that the DNA in the nuclei of the sperm cells had greater levels of fragmentation in diabetic men, and that there were more deletions of DNA in the tiny, energy-generating structures in the cells called mitochondria.

Queen’s research fellow, Dr Ishola Agbaje, said: “As far as we know, this is the first report of the quality of DNA in the nucleus and mitochondria of sperm in diabetes. Our study identifies important evidence of increased DNA fragmentation of nuclear DNA and mitochondrial DNA deletions in sperm from diabetic men. These findings cause concern, as they may have implications for fertility.”

Dr Agbaje and his colleagues examined sperm from 27 diabetic men in their thirties and found, that although semen volume was significantly less in diabetic men, there were no significant differences in sperm concentration, total sperm output, form and structure of the sperm or their ability to move. However when they measured DNA damage they found that the percentage of fragmented nuclear DNA was significantly higher in sperm from the diabetic men and that the number of deletions in mitochondrial DNA was also higher.

... more about:
»DNA »DNA damage »Diabetes »fertility »sperm

The incidence of type 1 and type 2 diabetes is increasing rapidly worldwide. While diet and obesity are known to be key factors in the increase of type 2 (or late onset) diabetes, type 1 diabetes which is usually diagnosed in childhood or adolescence, is increasing by three per cent a year in European children, although the reason for this is not entirely clear. Genetic factors that make people more susceptible, or environmental factors such as viruses that may trigger the onset of type 1 diabetes, could play a role.

Dr Agbaje, continued: “Infertility is already a major health problem in both the developed and developing world, with up to one in six couples requiring specialist investigation or treatment in order to conceive. Moreover, the last 50 years have seen an apparent decline in semen quality. Sperm disorders are thought to cause or contribute to infertility in 40-50% of infertile couples. The increasing incidence of systemic diseases such as diabetes may further exacerbate this decline in male fertility. However, it is not clear to what extent clinics consider information about the diabetic status of their patients when investigating fertility problems.”

Professor Sheena Lewis, of Queen’s Reproductive Medicine Research Group, said: "Our study shows increased levels of DNA damage in sperm from diabetic men. From a clinical perspective this is important, given the growing body of evidence that sperm DNA damage can impair male fertility and even the health of future generations. While the female egg has a limited ability to repair damaged sperm DNA, fragmentation beyond this threshold may result in increased rates of embryonic failure and pregnancy loss.”

However, Professor Lewis added: “that it was not possible to determine from this current study whether the DNA damage caused by diabetes would have the same effect on men's fertility as DNA damage caused by other factors such as smoking.

"This is just one, relatively small study that highlights a possible concern. Further studies need to be carried out in order to understand the precise nature of the diabetes-related damage, the causal mechanisms and the clinical significance," she said.

Lisa Mitchell | alfa
Further information:
http://www.qub.ac.uk

Further reports about: DNA DNA damage Diabetes fertility sperm

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>