Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Food cue-related brain activity linked to obesity?

26.04.2007
A unique pattern of gene expression observed in rats may be linked to a conditioned desire for food and excessive food intake, an article published today in BMC Biology suggests.

It’s well known that food-associated cues, such as advertising, can influence food intake. But the underlying neurobiology is far from clear. Craig A. Schiltz and colleagues from the University of Wisconsin Madison School of Medicine and Public Health, USA, created an experimental set up that allowed them to study patterns of gene expression linked to this motivational state - rats conditioned to expect a chocolate-flavoured treat in a particular environment, were subsequently denied their reward.

The research, conducted in the laboratory of Ann E. Kelly showed that expression of a handful of immediate early genes was increased in cortical, striatal, thalamic and hypothalamic brain regions. Food-related cues triggered dramatic changes in the functional connectivity of circuits involved in adaptive behaviour. For example, increased connectivity was seen between the cortex and two other regions - the amygdala and the striatum. Within the latter, there was a shift in activity from the outer shell to the inner core of the nucleus accumbens and an increased expression of the opioid-encoding proenkephalin gene.

Taken together, these results suggest that food-associated cues have a powerful influence on neuronal activity and gene expression in brain areas mediating complicated functions such as cognition and emotion, and more basic abilities such as arousal and energy balance. The pattern of activation differs from that elicited by neutral cues, and may well contribute to a conditioned motivational state that can lead to excessive food intake.

Press Officer | alfa
Further information:
http://www.biomedcentral.com/bmcbiol/

Further reports about: Brain activity linked

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>