Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Junk' DNA now looks like powerful regulator

24.04.2007
Large swaths of garbled human DNA once dismissed as junk appear to contain some valuable sections, according to a new study by researchers at the Stanford University School of Medicine and the University of California-Santa Cruz. The scientists propose that this redeemed DNA plays a role in controlling when genes turn on and off.

Gill Bejerano, PhD, assistant professor of developmental biology and of computer science at Stanford, found more than 10,000 nearly identical genetic snippets dotting the human chromosomes. Many of those snippets were located in gene-free chromosomal expanses once described by geneticists as "gene deserts." These sections are, in fact, so clogged with useful DNA bits - including the ones Bejerano and his colleagues describe - that they've been renamed "regulatory jungles."

"It's funny how quickly the field is now evolving," Bejerano said. His work picking out these snippets and describing why they might exist will be published in the April 23 advance online issue of the Proceedings of the National Academy of Sciences.

It turns out that most of the segments described in the research paper cluster near genes that play a carefully orchestrated role during an animal's first few weeks after conception. Bejerano and his colleagues think that these sequences help in the intricate choreography of when and where those genes flip on as the animal lays out its body plan. In particular, the group found the sequences to be especially abundant near genes that help cells stick together. These genes play a crucial role early in an animal's life, helping cells migrate to the correct location or form into organs and tissues of the correct shape.

... more about:
»Bejerano »DNA »Transposon

The 10,402 sequences studied by Bejerano, along with David Haussler, PhD, professor of biomolecular engineering at UC-Santa Cruz, are remnants of unusual DNA pieces called transposons that duplicate themselves and hop around the genome. "We used to think they were mostly messing things up. Here is a case where they are actually useful," Bejerano said.

He suspects that when a transposon is plopped down in a region where it wasn't needed, it slowly accumulated mutations until it no longer resembled its original sequence. The genome is littered with these decaying transposons. When a transposon dropped into a location where it was useful, however, it held on to much of the original sequence, making it possible for Bejerano to pick out.

In past work, Bejerano and his co-workers had identified a handful of transposons that seemed to regulate nearby genes. However, it wasn't clear how common the phenomenon might be. "Now we've shown that transposons may be a major vehicle for evolutionary novelty," he said.

The paper's first author, Craig Lowe, a graduate student in Haussler's lab at UC-Santa Cruz, said finding the transposons was just the first step. "Now we are trying to nail down exactly what the elements are doing," he said.

Bejerano's work wouldn't have been possible without two things that became available over the past few years: the complete gene sequence of many vertebrate species, and fast computers running sophisticated new genetic analysis software. "Right now it's like being a kid in a candy warehouse," Bejerano said. Computer-savvy biologists have the tools to ask questions about how genes and chromosomes evolve and change, questions that just a few years ago were unanswerable.

Bejerano and his colleagues aren't the first to suggest that transposons play a role in regulating nearby genes. In fact, Nobel laureate Barbara McClintock, PhD, who first discovered transposons, proposed in 1956 that they could help determine the timing for when nearby genes turn on and off.

Krista Conger | EurekAlert!
Further information:
http://www.stanford.edu

Further reports about: Bejerano DNA Transposon

More articles from Life Sciences:

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

nachricht Tiny Helpers that Clean Cells
14.08.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

Tiny Helpers that Clean Cells

14.08.2018 | Life Sciences

Algorithm provides early warning system for tracking groundwater contamination

14.08.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>