Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study of planarians offers insight into germ cell development

24.04.2007
The planarian is not as well known as other, more widely used subjects of scientific study - model creatures such as the fruit fly, nematode or mouse. But University of Illinois cell and developmental biology professor Phillip Newmark thinks it should be.

As it turns out, the tiny, seemingly cross-eyed flatworm is an ideal subject for the study of germ cells, precursors of eggs and sperm in all sexually reproducing species.

The planarian Newmark studies, Schmidtea mediterranea, is a tiny creature with a lot of interesting traits. Cut it in two (lengthwise or crosswise) and each piece will regenerate a new planarian, complete with brains, guts and - in most cases - gonads. Even when the planarian's brain is severed from its body, it can regenerate all that is removed, including the reproductive organs.

In a new study published this month in the Proceedings of the National Academy of Sciences, Newmark and his colleagues at the U. of I. report that planarians share some important characteristics with mammals that may help scientists tease out the mechanisms by which germ cells are formed and maintained. Newmark's team made a few discoveries related to a gene, called nanos, which was previously known to play a critical role in germ cell development in several other model organisms.

... more about:
»Newmark »germ cells »inductive »nanos »planarian

Unlike fruit flies and nematodes, which show signs of germ cell initiation in the earliest stages of their embryonic development, planarians do not generally express nanos or produce germ cells until several days after hatching. This delayed initiation of germ cell growth is called inductive specification, and is common to mammals and a number of other animals.

Graduate student Yuying Wang and the other team members were able to show that nanos is essential for inductive specification in planarians. Blocking nanos expression by means of RNA interference immediately after the planarians hatched prevented the emergence and development of germ cells. Blocking nanos in mature adults caused their ovaries and testes to disappear. And when the researchers blocked nanos expression in planarians that had had their bodies and reproductive organs detached from their brains, the planarians regenerated new bodies, but with no reproductive cells.

"This is the first time that nanos gene function has been studied in a non-traditional model organism," Newmark said. "This is important because planarians, like mammals, seem to make their germ cells by an inductive mechanism. So we're hoping that we can use the molecular biological tools available for studying planarians to get at the mechanisms that tell a cell: 'You're going to be a germ cell.' "

S. mediterranea also has the ability to reproduce asexually: It clones itself by means of fission. In looking at nanos in asexual individuals of this species, the researchers made the surprising discovery that these asexual individuals also express nanos and produce germ cells. Some other mechanism, as yet unknown, prevents these germ cells from developing into functional testes and ovaries.

"Having a simple organism that also uses inductive signaling is going to help us tease apart the more conserved mechanisms (of germ cell development and maintenance)," Newmark said. "We hope that this information will also prove informative for understanding these processes in higher organisms."

Editor's note: To reach Phillip Newmark, call 217-244-4674; e-mail:
pnewmark@uiuc.edu.

Diana Yates | University of Illinois
Further information:
http://www.news.uiuc.edu/news/07/0423germcells.html

Further reports about: Newmark germ cells inductive nanos planarian

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>