Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find major susceptibility genes for Crohn's disease

17.04.2007
Discoveries reveal new genetic risk factors for the millions of people with inflammatory bowel diseases

A consortium of Canadian and American researchers led by Dr. John D. Rioux, PhD, Associate Professor of Medicine at the Montreal Heart Institute and the Université de Montréal, report in the April 15 online edition of Nature Genetics the results from a search of the entire human genome for genetic risk factors leading to the development of Crohn's disease. Specifically, using a novel approach, the authors identified that the PHOX2B, NCF4 and ATG16L1 genes constitute genetic risk factors for Crohn's disease. In addition, their study identified two regions of the genome where genetic risk factors are located but no known genes were implicated – further work will be necessary to identify the causal genes in these regions.

More than 1 million Americans and some 170,000 Canadians have Crohn's or colitis, known collectively as inflammatory bowel disease (IBD). The study's authors represent the IBD Genetics Consortium, which is funded by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) of the National Institutes of Health. In addition to the Montreal Heart Institute and Université de Montréal, the Consortium's member institutions include the Cedars-Sinai Medical Center in Los Angeles, the University of Chicago, the Johns Hopkins University, the University of Pittsburgh, the University of Toronto, and Yale University.

Because IBD tends to run in families and is more frequent in certain ethnic populations, especially Ashkenazi Jews, scientists have long suspected a significant genetic component. Although previous genetic studies found a link between Crohn's disease and mutations in a gene known as CARD15, those mutations alone are not considered to account for the entire genetic component of disease. To identify additional genes that are associated with IBD, the international team of researchers scanned the genome—all of 22,000 or so genes— by testing more than 300,000 single nucleotide polymorphisms, or SNPs, in people with Crohn's disease and in healthy controls. The comparison of these SNPs (common genetic variants) between patient and control groups identified multiple SNPs that were strongly associated with Crohn's disease. These findings were then tested in two additional sets of patients and healthy controls in order to confirm their results.

... more about:
»ATG16L1 »Component »Crohn' »IBD »SNP

According to the corresponding author John D. Rioux, the findings highlight numerous biological pathways not previously thought to play a role in Crohn's disease. "The identification of the PHOX2B gene in this study, for example, may implicate a role for neuroendocrine cells of the intestinal epithelium as having a role to play in Crohn's Disease. In addition, the identification of the NCF4 gene indicates that altered reactive oxygen species (ROS) production, important in the generation of an effective anti-microbial response, may lead to increased risk to developing Crohn's disease". The fact that the authors also found strong association of the ATG16L1 gene provides further evidence that an individual's response to microbes has an influence on susceptibility to Crohn's disease.

Specifically, in addition to demonstrating its association to disease, these authors have shown that ATG16L1 is essential for the normal autophagic process used to degrade worn-out cellular components and help eliminate some pathogenic bacteria. "We propose that genetic variation in the ATG16L1 gene leads to alterations in how the body uses autophagy and therefore may result in increased persistence of both cellular and bacterial components, leading to inappropriate immune activation and increased risk of Crohn's disease" adds Dr. Rioux.

The findings reported in this study are expected to not only improve on the biological understanding of disease but should also have a long-term impact on clinical practice. According to Dr. Edmond-Jean Bernard, co-author and gastroenterologist at the Hotel Dieu Hospital in Montreal and the Université de Montréal "the multiple genetic risk factors we've identified provide important molecular targets for current functional studies aimed at understanding the disease and important targets for drug development to improve therapy of Crohn's disease in the future." Dr. Stephen P. James, M.D., director of the Division of Digestive Diseases and Nutrition at the National Institutes of Health's NIDDK continued by saying that "these important discoveries not only offer new hope for better therapies for patients with Crohn's disease, they also highlight the promise of the human genome project and subsequent investments by the NIH in large scale, collaborative research projects to unravel the causes of, and hopefully better treatments for complex, enigmatic diseases".

Sophie Langlois | EurekAlert!
Further information:
http://www.umontreal.ca

Further reports about: ATG16L1 Component Crohn' IBD SNP

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>