High-pressure chemistry in ultra small pressure cooker

The results were very promising. The reaction rate increased compared to conventional equipment, the measurements were accurate and safety was not a problem. Moreover it was possible to follow and regulate the reaction during the process.

Benito López started on this project by making microreactor chips that could measure high-pressure chemical reactions in two ways: with stationary or continuously flowing substances. His first chip was made of silicon fibre and could withstand a pressure up to 600 bar. Finding the optimal flow was the next step. After experiments with materials, a tube-like structure that was completely etched with hydrogen fluoride was found to be the most suitable.

In such a chip, the researcher allowed chemical reactions to take place under pressures ranging from 110 to 690 bar with continuously flowing substances. Increasing pressure and the rapid mixing were found to favourably affect the rate of the reaction; up to 1.7 times faster than the advanced, expensive conventional equipment.

The reactions carried out were successful for pressures up to 600 bar and for volumes ranging from microlitres to nanolitres. The combination of pressure and the reduced dimensions of the equipment were found to lead to faster reaction rates than in the equipment used to date, whilst the safety risks decreased significantly. Further on-line detectors can be attached to the chip with which the reaction can be monitored and therefore controlled.

The development of a miniaturised Total Analysis System (µTAS) is therefore no longer a thing of the future.

Benito López’s research was funded by Technology Foundation STW.

Media Contact

F. Benito López alfa

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Making diamonds at ambient pressure

Scientists develop novel liquid metal alloy system to synthesize diamond under moderate conditions. Did you know that 99% of synthetic diamonds are currently produced using high-pressure and high-temperature (HPHT) methods?[2]…

Eruption of mega-magnetic star lights up nearby galaxy

Thanks to ESA satellites, an international team including UNIGE researchers has detected a giant eruption coming from a magnetar, an extremely magnetic neutron star. While ESA’s satellite INTEGRAL was observing…

Solving the riddle of the sphingolipids in coronary artery disease

Weill Cornell Medicine investigators have uncovered a way to unleash in blood vessels the protective effects of a type of fat-related molecule known as a sphingolipid, suggesting a promising new…

Partners & Sponsors