Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson scientists identify protein key to breast cancer spread, potential new drug target

11.04.2007
Researchers at the Kimmel Cancer Center at Jefferson have identified a protein that they say is key to helping a quarter of all breast cancers spread. The finding, reported online the week of April 9, 2007 in the journal Proceedings of the National Academy of Sciences, could be a potential target for new drugs aimed at stopping or slowing the growth and progression of breast cancer.

Kimmel Cancer Center director Richard Pestell, M.D., Ph.D., professor and chair of cancer biology at Jefferson Medical College of Thomas Jefferson University in Philadelphia, and colleagues genetically engineered mice to lack the protein Akt1, which normally plays a role in keeping cells alive by interfering with programmed cell death. Breast and other cancers make an overabundance of the protein, and it’s thought to potentially affect survival of breast and other cancer cells as well.

To test that hypothesis, Dr. Pestell and his team bred the mice missing the gene for Akt1 with other mice that overexpressed the HER2-neu (ErbB2) oncogene, which leads to approximately 25 percent of all breast cancers. They then examined the role of Akt in the onset and progression of breast cancer in the resulting offspring.

To their surprise, mice lacking two copies of the gene that produces Akt1 rarely had any tumors. Those mice that carried only one copy of the Akt1 gene developed some tumors, but they were small and developed more slowly. Mice with two copies of Akt1 rapidly developed significant cancer.

... more about:
»AKT1 »Pestell »breast cancer »metastasis

“The finding was exciting because it told us that Akt1 is a potentially useful target for ErbB2-positive breast cancer,” Dr. Pestell says. “More interesting was that even if the mouse developed a tumor, it didn’t develop metastases. We proved that there was a requirement for Akt1 in metastasis, which makes Akt1 an exciting target for metastatic breast cancer. We knew that Akt1 could play a role in cell growth and size, but the idea that it could play a role in migration and metastasis was an unexpected new finding,”

The researchers also proved how, showing that Akt1 causes the cancer cells to secrete a factor – CXCL16 – that promotes breast cancer cell migration. Without Akt, cancer cells failed to migrate. They also showed that deleting Akt1 completely blocked breast cancer metastasis to the lungs, while mice that expressed Akt1 died from lung metastasis.

While scientists have looked at Akt as a drug target, notes Arthur Pardee, Ph.D., professor emeritus of medical oncology at the Dana-Farber Cancer Institute in Boston, its role in metastasis is less emphasized. “Blocking this with anti-Akt drugs might provide a novel treatment, especially against early cancers,” he says.

While the monoclonal antibody drug Herceptin has been very successful in treating ErbB2-positive breast cancer, patients can relapse, Dr. Pestell notes, and other drug targets are needed. The newly found secreted factor may prove to be such a target.

“We’d like to find a way of blocking CXCL16 production and see if it’s true in human breast cancers,” Dr. Pestell says. “Right now we are looking at patients’ samples to see whether this is important in promoting metastatic breast cancer of other types.”

Steve Benowitz | EurekAlert!
Further information:
http://www.jefferson.edu

Further reports about: AKT1 Pestell breast cancer metastasis

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>