Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolution of symbiosis

10.04.2007
The aphid Acyrthosiphon pisum depends on a bacterial symbiont, Buchnera aphidicola, for amino acids it can’t get from plants. The aphid, in turn, provides the bacterium with energy and carbon as well as shelter inside specialized cells.

Such interdependent relationships are not unusual in the natural world. What is unusual, report Helen Dunbar, Nancy Moran, and colleagues in a new study published this week in the open access journal PLoS Biology, is that a single point mutation in Buchnera’s genome can have consequences for its aphid partner that are sometimes detrimental, and sometimes beneficial.

The authors probe Buchnera’s and A. pisum’s ability to tolerate heat. When exposed to high temperatures, Buchnera is supposed to activate special “heat-shock” genes whose products help to protect proteins from heat-related degradation. By using microarrays to assess activity of A. pisum and Buchnera genes, the researchers discovered that after a four-hour exposure to 35 °C temperature, some of their laboratory strains of Buchnera upregulated the heat-shock genes, but others did not. Further analysis showed the genetic basis for the difference: a single missing nucleotide in an adenine-filled stretch of DNA, called a promoter, that’s involved in activating the heat-shock gene. Testing at a range of temperatures from 15 °C to 35 °C showed that activation of the heat-shock gene was consistently lower in the lines with the missing nucleotide than in the normal bacteria.

What does this mean for A. pisum’s ability to tolerate tough conditions? To answer that, the researchers asked whether exposing juvenile aphid hosts of Buchnera with either long or short promoters to four hours of high temperatures (35 or 38 °C) affected their ability to reproduce. They found that few of the aphids with bacteria bearing short promoters reproduced after the heat treatment, while those with bacteria bearing the longer promoters had no trouble. In addition, aphids that had been exposed to the high temperatures and had the short-promoter-bearing bacteria weighed less as adults and had far fewer Buchnera inside them than did their counterparts with long-promoter-bearing bacteria.

... more about:
»Buchnera »Mutation »aphid »heat-shock »symbiont

Given these seemingly huge disadvantages to dropping a single adenine, it’s hard to believe the mutation could last long in a Buchnera population. Yet, by sequencing and comparing the Buchnera associated with various A. pisum lines, the researchers discovered that the short-promoter option had arisen and been fixed twice in laboratory stock and was also found at frequencies of 21% and 13%, respectively, in bacteria in field-collected aphids from Wisconsin and New York.

Population genetic theory predicts that when a mutation is maintained in a population at high frequencies, it likely confers some benefit to its bearer. What could be the advantage of carrying a gene that causes one to lose the ability to reproduce at high temperatures?

A clue to the answer comes from the wild populations in which the mutation was not found: those living in Arizona and Utah. Could the bacterial mutation confer a competitive advantage that’s only relevant in cooler climates? To find that out, the researchers performed a second test using a range of four-hour exposure temperatures. They discovered that short-promoter bacteria-bearing aphids produced progeny faster than did the normal ones when raised at 15 °C or 20 °C. Thus, though aphids containing bacterial symbionts with the heat-shock-promoter mutation fare worse than normal aphids after exposure to high temperatures, they do better under cool conditions, giving the mutation a selective advantage that causes it to be maintained in the population.

In addition to their explorations of A. pisum and its Buchnera, Moran’s team also looked for and found multiple-adenine stretches related to heat-shock genes in Buchnera symbiotic with other aphid species. This offers fertile ground for further study of the intriguing interplay among aphids, bacteria, and temperature.

Citation: Dunbar HE, Wilson ACC, Ferguson NR, Moran NA (2007) Aphid thermal tolerance is governed by a point mutation in bacterial symbionts. PLoS Biol 5(5): e96. doi:10.1371/journal.pbio.0050096.

Andrew Hyde | alfa
Further information:
http://www.plosbiology.org
http://biology.plosjournals.org/perlserv/?request=get-document&doi=10.1371/journal.pbio.0050096

Further reports about: Buchnera Mutation aphid heat-shock symbiont

More articles from Life Sciences:

nachricht UNH researchers create a more effective hydrogel for healing wounds
21.11.2018 | University of New Hampshire

nachricht Removing toxic mercury from contaminated water
21.11.2018 | Chalmers University of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

New China and US studies back use of pulse oximeters for assessing blood pressure

21.11.2018 | Medical Engineering

Exoplanet stepping stones

21.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>