Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly discovered 'platform' for processing dietary fat

05.04.2007
A new "platform" with a crucial role in the body's ability to process and take up fat from the diet has been found, according to a report in the April issue of the journal Cell Metabolism, published by Cell Press.

Researchers discovered a protein that sits on the inner surfaces of capillaries, where it delivers "packages" of dietary fat from the bloodstream to enzymes that prepare them for entry into cells of the body. Once inside cells, the fats are either burned as a rich source of energy or stored for later use.

"We've found a new, very important partner in a process people thought they understood 20 years ago," said Anne Beigneux of the University of California, Los Angeles.

While it is too soon to say whether the finding will have clinical implications—in efforts to limit the body's capacity to store fat, for instance—one thing is for certain: "Soon, every biochemistry book will have to be revised," she said.

Dietary fats in mammals are packaged by the intestine into "chylomicrons," which are large triglyceride-rich lipoproteins, Beigneux explained. After reaching the bloodstream, the triglycerides within chylomicrons are broken down by an enzyme found along the surface of capillaries, mainly in the heart, skeletal muscle, and fat tissue. In those tissues, the so-called lipoprotein lipase enzyme is synthesized, secreted, and transported to the capillaries, where the packaged lipids are taken apart.

The fat "bundles" have to be broken down because the lipids are otherwise unable to get across cell membranes, Beigneux added.

The researchers "stumbled onto" a new player in the process after a team at Genentech found mutant mice with severe chylomicronemia, a condition in which the inability to properly process dietary fat leads to high levels of blood triglycerides.

The mice—which lacked a gene called glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1, or Gpihbp1—exhibited a striking accumulation of chylomicrons in the plasma, even on a low-fat diet, the researchers report. The animals' deficiency caused their blood plasma to become milky as their blood triglyceride levels skyrocketed. Normally, the lipoprotein-binding protein is found at high levels in heart and adipose tissue, the same tissues that express high levels of the enzyme that breaks chylomicrons down, they report.

The researchers conclude that GPIHBP1 is crucial for chylomicron processing. It is located on the inner surface of the capillary and binds both chylomicrons and the processing enzyme, likely forming a platform for lipid breakdown and playing an important role in the delivery of lipid nutrients to cells.

The findings might have direct implications for patients with chylomicronemia, Beigneux said. The disorder in humans has been linked only to defects in the genes encoding the lipid-degrading enzyme or its cofactor, she explained.

"Now, anybody who has chylomicronemia without one of those mutations should be looked at for a mutation in [this platform protein, GPIHBP1]," she said.

Erin Doonan | EurekAlert!
Further information:
http://www.cell.com

Further reports about: Beigneux HDL-cholesterol Triglyceride chylomicron

More articles from Life Sciences:

nachricht Study reveals profound patterns in globally important algae
21.08.2019 | Bigelow Laboratory for Ocean Sciences

nachricht Intestinal bacteria in type 2 diabetes: being overweight is pivotal
21.08.2019 | Exzellenzcluster Präzisionsmedizin für chronische Entzündungserkrankungen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum computers to become portable

Together with the University of Innsbruck, the ETH Zurich and Interactive Fully Electrical Vehicles SRL, Infineon Austria is researching specific questions on the commercial use of quantum computers. With new innovations in design and manufacturing, the partners from universities and industry want to develop affordable components for quantum computers.

Ion traps have proven to be a very successful technology for the control and manipulation of quantum particles. Today, they form the heart of the first...

Im Focus: Towards an 'orrery' for quantum gauge theory

Experimental progress towards engineering quantized gauge fields coupled to ultracold matter promises a versatile platform to tackle problems ranging from condensed-matter to high-energy physics

The interaction between fields and matter is a recurring theme throughout physics. Classical cases such as the trajectories of one celestial body moving in the...

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Vehicle Emissions: New sensor technology to improve air quality in cities

Researchers at TU Graz are working together with European partners on new possibilities of measuring vehicle emissions.

Today, air pollution is one of the biggest challenges facing European cities. As part of the Horizon 2020 research project CARES (City Air Remote Emission...

Im Focus: Self healing robots that "feel pain"

Over the next three years, researchers from the Vrije Universiteit Brussel, University of Cambridge, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris (ESPCI-Paris) and Empa will be working together with the Dutch Polymer manufacturer SupraPolix on the next generation of robots: (soft) robots that ‘feel pain’ and heal themselves. The partners can count on 3 million Euro in support from the European Commission.

Soon robots will not only be found in factories and laboratories, but will be assisting us in our immediate environment. They will help us in the household, to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

An Ice Age savannah corridor let large mammals spread across Southeast Asia

22.08.2019 | Earth Sciences

Protein-transport discovery may help define new strategies for treating eye disease

22.08.2019 | Health and Medicine

Boreal forest fires could release deep soil carbon

22.08.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>