Newly discovered 'platform' for processing dietary fat

Researchers discovered a protein that sits on the inner surfaces of capillaries, where it delivers “packages” of dietary fat from the bloodstream to enzymes that prepare them for entry into cells of the body. Once inside cells, the fats are either burned as a rich source of energy or stored for later use.

“We've found a new, very important partner in a process people thought they understood 20 years ago,” said Anne Beigneux of the University of California, Los Angeles.

While it is too soon to say whether the finding will have clinical implications—in efforts to limit the body's capacity to store fat, for instance—one thing is for certain: “Soon, every biochemistry book will have to be revised,” she said.

Dietary fats in mammals are packaged by the intestine into “chylomicrons,” which are large triglyceride-rich lipoproteins, Beigneux explained. After reaching the bloodstream, the triglycerides within chylomicrons are broken down by an enzyme found along the surface of capillaries, mainly in the heart, skeletal muscle, and fat tissue. In those tissues, the so-called lipoprotein lipase enzyme is synthesized, secreted, and transported to the capillaries, where the packaged lipids are taken apart.

The fat “bundles” have to be broken down because the lipids are otherwise unable to get across cell membranes, Beigneux added.

The researchers “stumbled onto” a new player in the process after a team at Genentech found mutant mice with severe chylomicronemia, a condition in which the inability to properly process dietary fat leads to high levels of blood triglycerides.

The mice—which lacked a gene called glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1, or Gpihbp1—exhibited a striking accumulation of chylomicrons in the plasma, even on a low-fat diet, the researchers report. The animals' deficiency caused their blood plasma to become milky as their blood triglyceride levels skyrocketed. Normally, the lipoprotein-binding protein is found at high levels in heart and adipose tissue, the same tissues that express high levels of the enzyme that breaks chylomicrons down, they report.

The researchers conclude that GPIHBP1 is crucial for chylomicron processing. It is located on the inner surface of the capillary and binds both chylomicrons and the processing enzyme, likely forming a platform for lipid breakdown and playing an important role in the delivery of lipid nutrients to cells.

The findings might have direct implications for patients with chylomicronemia, Beigneux said. The disorder in humans has been linked only to defects in the genes encoding the lipid-degrading enzyme or its cofactor, she explained.

“Now, anybody who has chylomicronemia without one of those mutations should be looked at for a mutation in [this platform protein, GPIHBP1],” she said.

Media Contact

Erin Doonan EurekAlert!

More Information:

http://www.cell.com

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors