Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein found to shield pancreatic cancer cells from self-destruction

21.03.2007
An overexpressed protein protects human pancreatic cancer cells from being forced to devour themselves, removing one of the body's natural defenses against out-of-control cell growth, researchers at The University of Texas M. D. Anderson Cancer Center report in the March issue of Molecular Cancer Research.

The protein tissue transglutaminase, known by the abbreviation TG2, previously has been found by researchers at M. D. Anderson and elsewhere to be overexpressed in a variety of drug-resistant cancer cells and in cancer that has spread from its original organ (metastasized).

"In general, you rarely see overexpression of TG2 in a normal cell," says Kapil Mehta, Ph.D., professor in the M. D. Anderson Department of Experimental Therapeutics, who began 10 years ago studying TG2 as an inflammatory protein.

Mehta and colleagues in the past year have connected TG2 overexpression to drug-resistant and metastatic breast cancer, pancreatic cancer and melanoma.

... more about:
»Cancer »Mehta »Organelle »TG2 »autophagy »pancreatic

Expression of TG2 is tightly regulated in a healthy cell, Mehta says, and is temporarily increased in response to certain hormones or stress factors. "However, constitutive expression of this protein in a cancer cell helps confer protection from stress-induced cell death," Mehta says. "We are developing TG2 as a pharmaceutical target and are now working with a mouse model to that end."

The mechanisms by which TG2 might promote drug-resistance and metastasis have remained elusive, the researchers note. In this paper, the M. D. Anderson team shows in lab experiments that inhibiting the protein in pancreatic cancer cells leads to a form of programmed cell suicide called autophagy, or self-digestion.

TG2 was inhibited in two separate ways. First, the researchers blocked another protein known to activate TG2. Secondly, they also directly targeted TG2 with a tiny molecule known as small interfering RNA tailored to shut down expression of the protein.

In both cases, the result was a drastic reduction of TG2 expression (up to 94 percent) and telltale signs of autophagy in the cancer cells, which became riddled with cavities called vacuoles.

When autophagy occurs, a double membrane forms around a cell organ, or organelle. This autophagosome then merges with a digestive organelle called a lysosome and everything inside is consumed, leaving the vacuole and a residue of digested material. If enough of this happens, the cell dies.

Gabriel Lopez-Berestein, M.D., professor of experimental therapeutics and study co-author, notes that the research also shows that the self-consuming cell death prevented by TG2 is independent of a prominent molecular pathway also known to regulate autophagy called the mammalian target of rapamycin.

"Targeting TG2, or its activating protein PKC, or both, presents a novel and potentially effective approach to treating patients with pancreatic cancer," Lopez-Berestein said. Research in the mouse model remains in the early stages, the researchers caution.

The researchers also show that the TG2 pathway also is separate from another, better known, form of programmed cell death called apoptosis.

Apoptosis, like autophagy, is a normal biological defense mechanism that systematically destroys defective cells by forcing them to kill themselves. In apoptosis, the cells die via damage to their nucleus and DNA, with other cellular organelles preserved. Autophagy kills by degrading those other organelles while sparing the nucleus.

Mehta's lab reported in a Cancer Research paper last September that TG2 overexpression also activates a protein called nuclear factor-kB known to play a role in regulating cell growth, metastasis and apoptosis. This pathway, Mehta explained, could make TG2 an attractive target for other forms of cancer as well.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

Further reports about: Cancer Mehta Organelle TG2 autophagy pancreatic

More articles from Life Sciences:

nachricht A study demonstrates that p38 protein regulates the formation of new blood vessels
17.07.2019 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht For bacteria, the neighbors co-determine which cell dies first: The physiology of survival
17.07.2019 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Tracking down climate change with radar eyes

17.07.2019 | Earth Sciences

Researchers build transistor-like gate for quantum information processing -- with qudits

17.07.2019 | Information Technology

A new material for the battery of the future, made in UCLouvain

17.07.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>