Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CSHL Scientists Confirm Genetic Distinction Between Heritable and Sporadic Cases of Autism

21.03.2007
Autism is thought to be the most highly heritable of all neuro-psychiatric disorders. Yet, most cases of this childhood developmental disorder that severely affects social interaction and communication are “sporadic” and come with no family history.

New research, led by Cold Spring Harbor Laboratory (CSHL) scientists Jonathan Sebat, Lakshmi Muthuswamy and Michael Wigler, has found a distinction between heritable and sporadic forms of the disease. These findings may influence future autism research and diagnostic testing.

“We found that many children with autism have spontaneous mutations in their DNA. This occurs more often in the sporadic cases than in either familial cases or in healthy children,” said Sebat. The study, published in the March 16, 2007 edition of Science, reports that at least 10% of children with autism carry an alteration in their DNA that is not found in either parent, a much higher rate than is observed in healthy children. To date, most genetic studies of autism have focused on families with multiple autistic children. “Our findings suggest that sporadic autism is genetically distinct from the type that runs in families, and that we must use different approaches for studying them,” concluded Sebat.

“Sporadic autism is the more common form of the disease, and even the inherited form might derive from a mutation that occurred in a parent or grandparent,” explained Wigler. Using a high-resolution method for analyzing DNA called microarray technology, the researchers found that spontaneous copy number mutations occur primarily in sporadic cases. The study reports that these new mutations were found less frequently in families that have more than one child with autism.

The results strengthen the scientific basis for using microarray technology for diagnostic testing. Methods for detecting spontaneous mutations will provide important information for children with autism and their parents. This information could help to determine the risk of having a second child with autism, and the knowledge of which genes are involved may lead to the development of new therapies.

“This work received the vast bulk of its funding from the Simons Foundation, which generously supported the research when it was little more than an idea and a technique,” Wigler acknowledged. In addition to the Simons Foundation, other supporters of this research included The National Institute of Mental Health, Autism Speaks, Cure Autism Now, and the Southwestern Autism Research and Resource Center.
“This discovery sets a new framework for understanding, diagnosing and potentially treating autism,” said CSHL President Bruce Stillman. CSHL is pursuing a $200 million capital campaign that will include construction of new research facilities dedicated to the study of autism.

The full citation of the paper:

C. Sebat et al., Science, 15 March 2007 (10.1126/science.113569). To access the publication on line go to:
http://www.sciencemag.org/cgi/content/short/1128659

CSHL is a private, non-profit research and education institution dedicated to exploring molecular biology and genetics in order to advance the understanding and ability to diagnose and treat cancers, neurological diseases, and other causes of human suffering.

Alyssa Nightingale | EurekAlert!
Further information:
http://www.cshl.edu
http://www.sciencemag.org/cgi/content/short/1128659

Further reports about: Autism CSHL Mutation Sebat sporadic

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>