Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Notorious cancer gene may work by destroying messenger

21.03.2007
A new study suggests how a notorious cancer gene may contribute to tumor growth.

The insight emerged from a long-running study of a protein called PMR1, the key player in an unusual mechanism that cells use to quickly stop production of certain important proteins.

Researchers discovered that PMR1 is activated – or “turned on – by another molecule, an energy-packing protein called Src (pronounced “sark”).

Discovered in 1977, Src became the first “oncogene” – mutated genes that help make cells cancerous. Oncogenes are altered forms of genes that control cell growth and cell division.

These findings provide insight into how Src might contribute to cancer development.
... more about:
»Cancer »Control »PMR1 »SRC »Schoenberg »mRNA

The study by researchers with the Ohio State University Comprehensive Cancer Center is published in the March 9 issue of the journal Molecular Cell.

“The link between Src and cancer was discovered 30 years ago, but to this day, we still don't know its exact role in tumor development,” says principal investigator Daniel R. Schoenberg, professor of molecular and cellular biochemistry.

“Our data suggest that Src may promote cancer by causing PMR1 to halt production of proteins that normally put the brakes on cell growth – tumor-suppressor proteins, for example, or other growth-regulating proteins.”

In healthy cells, Src helps control cell proliferation, differentiation, survival and movement. Mutated Src is found in about half of all colon, liver, lung, breast and pancreatic tumors, and the amount of Src can be significantly higher in cancer cells compared to normal cells.

Earlier research led by Schoenberg found that PMR1 helps control protein production by destroying particular messenger RNAs (mRNAs), molecules that carry the information used to assemble a protein.

That work showed that PMR1 attaches to the mRNAs and remains there as a silent passenger. If it receives the proper signal, however, the protein chops up and destroys the mRNA, which instantly stops production of that protein.

Cells use that mechanism to control the production of proteins such as growth factors, which activate genes in response to a hormone or other signal.

PMR1 also plays a key role in Cooley's anemia, which causes the loss of red blood cells in infants and children.

For the present study, Schoenberg and coauthor Yong Peng, a research associate in Schoenberg's laboratory, wanted to learn how PMR1 is activated to attach to mRNAs.

They found that activation occurs when PMR1 is momentarily joined by an unidentified enzyme. Contact with this enzyme changes the properties of PMR1, and this enables it to join with, or bind to, its target mRNA.

Peng then used monoclonal antibodies to isolate PMR1 and the enzyme while the two were bound together, capturing both. After separating the two, the investigators identified the enzyme as Src, which is a member of a large family of molecules called tyrosine kinases. These molecules act like switches that turn other molecules on and off, including PMR1.

“That's the real excitement about this paper,” Schoenberg says. “We came at this with an interest in mRNA decay, and we may have stumbled across a fundamental mechanism of cancer.”

Next, Schoenberg and his associates Xiaoqiang Liu and Elizabeth Murray will use three cancer-cell lines to try to identify what messenger RNAs – which will also tell them what proteins – are targeted and destroyed by PMR1.

“That will help tell us whether Src works through PMR1 to contribute to cancer,” Schoenberg says.

Funding from the National Institute for General Medical Sciences supported this research.

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

Further reports about: Cancer Control PMR1 SRC Schoenberg mRNA

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>