Computing yeast in three-dimensions: Protein structures for the entire yeast proteome

The 3D-structure can provide information about critical protein-protein interactions both from a global perspective as well as all the way down to the level of minuscule molecular and biochemical detail. In much the same way, structural information can reveal a lot about the protein’s evolutionary relationships and functions. Even to provide this information about all the proteins in one organism—its proteome—would offer a more global view of these relationships, but solving each structure individually would be a formidable task.

However, in a new study published online this week in the open access journal PLoS Biology, Lars Malmström, David Baker, and colleagues have done precisely this for the model organism yeast. These researchers divided all Saccharomyces cerevisiae proteins into nearly 15,000 distinct “domains” (regions of a protein that fold into a distinct quaternary globular structure). They then applied their own de novo structure prediction methods together with worldwide distributed computing to predict three-dimensional structures for all domains lacking sequence similarity to proteins of known structure.

To overcome the uncertainties in de novo structure prediction, Lars Malmström and colleagues combined these predictions with data on the biological process, function, and localization of the proteins from previous experimental studies to assign the domains to families of evolutionarily related proteins. These genome-wide domain predictions and superfamily assignments provide the basis for the generation of experimentally testable hypotheses about the mechanism of action for a large number of yeast proteins.

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Combatting disruptive ‘noise’ in quantum communication

In a significant milestone for quantum communication technology, an experiment has demonstrated how networks can be leveraged to combat disruptive ‘noise’ in quantum communications. The international effort led by researchers…

Stretchable quantum dot display

Intrinsically stretchable quantum dot-based light-emitting diodes achieved record-breaking performance. A team of South Korean scientists led by Professor KIM Dae-Hyeong of the Center for Nanoparticle Research within the Institute for…

Internet can achieve quantum speed with light saved as sound

Researchers at the University of Copenhagen’s Niels Bohr Institute have developed a new way to create quantum memory: A small drum can store data sent with light in its sonic…

Partners & Sponsors