Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Do you need sex to be a species? Speciation in asexual rotifers

20.03.2007
If you own a birdbath, chances are you’re hosting one of evolutionary biology’s most puzzling enigmas: bdelloid rotifers. These microscopic invertebrates—widely distributed in mosses, creeks, ponds, and other freshwater repositories—abandoned sex perhaps 100 million years ago, yet have apparently diverged into nearly 400 species.

Bdelloids have remained an enduring enigma in part because biologists are still debating whether the species actually exist as true evolutionary entities. And if they do, what forces determine how they diverge? In the traditional view of species diversification, interbreeding promotes cohesion within a population—maintaining the species—and barriers to interbreeding (called reproduction isolation) promote species divergence. With no interbreeding to maintain cohesion, the thinking goes, asexual taxa might not diversify into distinct species.

In a new study published in PLoS Biology , Diego Fontaneto, Timothy Barraclough, and colleagues developed new statistical techniques for combined molecular and morphological analyses of rotifers to test the notion that species diversification requires sex. The researchers show that, despite an ancient aversion for interbreeding, bdelloids display evolutionary patterns similar to those seen in sexually reproducing taxa. How they have avoided the pitfalls of a lifestyle widely regarded as evolutionary suicide remains an open question.

Fontaneto et al. predicted that if factors other than interbreeding, such as niche specialization, controlled species cohesion and divergence, then asexual taxa should diverge along the same lines as sexually reproducing organisms. And if this were the case, they would expect to find genetic and morphological cohesion within independently evolving populations and divergence between them.

To detect independently evolving populations, the researchers analyzed marker genes isolated from clones of bdelloids collected from diverse habitats around the world. They constructed evolutionary trees using these and also did a morphological analysis where they measured the size and shape of the rotifers’ jaws (called trophi). The morphological results largely fell in line with traditional taxonomic classifications for most bdelloid species. And species identified as related on the DNA trees typically had similar morphology.

The correspondence between the molecular and morphological results suggests that the majority of traditionally identified bdelloid species are what’s known as monophyletic: individuals in the same species assort together on the evolutionary tree and share a common ancestor. Using statistical models to determine the likely origin of the observed DNA tree branching patterns, the researchers show that these distinct monophyletic genetic clusters represent independently evolving entities (rather than variations within a single asexual population).

But what caused them to evolve independently? Are they geographically isolated populations that evolved under neutral selection, or did they evolve into ecologically discrete species as a result of divergent selection pressures on trophi morphology? If bdelloids have experienced divergent selection, the researchers explain, they would expect to see high variation in trophi traits between species, and low intraspecies variation (compared to neutral changes). And that’s what they found: bdelloids have experienced divergent selection on trophi size (and to a lesser degree, on trophi shape) at the species level.

Altogether, these results show that the asexual bdelloids have indeed experienced divergent selection on feeding morphology, most likely as they adapted to different food sources found in different niches. By showing that asexual organisms have diverged into “independently evolving and distinct entities,” the researchers argue, this study “refutes the idea that sex is necessary for diversification into evolutionary species.” They hope others use their approach to study mechanisms underlying species divergence in sexual taxa to clarify the hazy nature of species and biological diversity.

Andrew Hyde | alfa
Further information:
http://www.plosbiology.org
http://biology.plosjournals.org/perlserv/?request=get-document&doi=10.1371/journal.pbio.0050087

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>