Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study reveals how some molecules inhibit growth of lung cancer cells

14.03.2007
Findings provide new direction to drug design

By mapping the interlocking structures of small molecules and mutated protein "receptors" in non-small cell lung cancer (NSCLC) cells, scientists at Dana-Farber Cancer Institute and their colleagues have energized efforts to design molecules that mesh with these receptors, potentially interfering with cancer cell growth and survival.

In a study published in the March issue of Cancer Cell, researchers led by Michael Eck, MD, PhD, of Dana-Farber used X-ray crystallography to determine the structure of two mutated forms of the epidermal growth factor receptor (EGFR) in lung cancer cells. EGFR, a protein known as a tyrosine kinase, plays a key role in relaying growth signals within cells. When mutated, it can become overactive, leading to excessive cell division and cancer.

"It turns out that in some cases, the very mutation that causes the cancer in the first place is also the cancer’s Achilles’ heel," said Eck, the paper’s senior author. "We now see that inhibitors such as gefitinib actually bind more tightly to some of the cancer-causing mutants, even though they were originally developed to block the normal receptor."

... more about:
»Cancer »EGFR »Mutant »Mutation »effective »mutated »receptor

Cai-Hong Yun, PhD, of Dana-Farber is the paper’s first author.

Mutations in the EGFR kinase domain occur in approximately 16 percent of NSCLCs, but at much higher frequencies in selected populations, including nonsmokers, women, and East Asian patients. Laboratory and clinical studies have shown that tyrosine kinase inhibitors are more effective against some EGFR mutations than others, although the molecular reasons for this are unclear. By developing a better understanding of the effect of the mutations on inhibitor binding at a structural level, it may be possible to develop more effective therapies.

In the current study, Eck and his colleagues analyzed the three-dimensional structures of the normal and mutated versions of EGFR bound to several different types of inhibitor molecules. They found that two inhibitors – the drug gefitinib (marketed as Iressa(R), and a compound called AEE788 – bind especially tightly to one of the mutated forms, meaning these inhibitors are potentially more effective at blocking the growth of cancer cells containing that mutation. In the case of gefitinib, it bound 20 times more tightly to the L858R mutant than to the normal, mutation-free EGFR.

The research team concluded that the particular EGFR mutation within tumor cells determines which inhibitor molecules are likely to be able to slow or stop the growth of those cells.

"Although structural divergence in the EGFR mutants may complicate efforts to treat the disease, it may also present an advantage in that it introduces the possibility of developing inhibitors that target specific mutations, which should lead to more effective treatments," said Eck, who also an associate professor of Biological Chemistry and Molecular Pharmacology at Harvard Medical School. "These targeted therapies likely would be less toxic as they, in theory, would not affect the normal functioning EGFR proteins."

Bill Schaller | EurekAlert!
Further information:
http://www.dana-farber.org

Further reports about: Cancer EGFR Mutant Mutation effective mutated receptor

More articles from Life Sciences:

nachricht Bioenergy cropland expansion could be as bad for biodiversity as climate change
11.12.2018 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht How glial cells develop in the brain from neural precursor cells
11.12.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>