Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic pathways to curable and incurable forms of pancreatic cancer identified

13.03.2007
Pancreatic ductal adenocarcinoma is an almost uniformly fatal disease regardless of the stage at time of diagnosis. However, a small percentage of patients develop a form of ductal adenocarcinoma associated with cystic lesions that can be detected earlier, is less aggressive and has a 50 percent long-term survival rate.

Why cystic ductal pancreatic cancer behaves differently, despite carrying the same basic genetic mutations as the more common and deadly type of ductal pancreatic cancer, has long been a mystery. Now researchers at Fred Hutchinson Cancer Research Center have unlocked the genetic reason why.

Using unique mouse models to mimic the progression of both forms of human pancreatic cancer, researchers have discovered that a specific sequence of otherwise common genetic mutations is responsible for sending cells down the less-traveled path toward cystic pancreatic cancer versus the well-traveled route to the more fatal form of ductal pancreatic cancer.

Sunil Hingorani, M.D., assistant member of the Hutchinson Center's Clinical Research and Public Health Sciences divisions, led a study to be published in the March 12 issue of the journal Cancer Cell that explains this sequence and details why the cells behave differently.

"Although at their end stage the two different routes to ductal pancreatic cancer can look very much the same under the microscope, involve the same constellation of genetic events, and culminate in invasive and metastatic disease that can ultimately kill patients, one route is 100 percent fatal while the other is 50 percent curable," Hingorani said. "Until now we didn't understand why. What these studies suggest is that it's not just the total complement of mutations that determines the behavior of these cancers but also the sequence in which the mutations arise."

About 5 percent of all primary tumors of the pancreas, out of 40,000 annual new cases in the United States, arise from cystic tumors.

The findings reported in the journal by Hingorani and colleagues represent an accidental discovery. The researchers started out studying the common genetic pathways to pancreatic ductal adenocarcinoma in hopes of finding clues to developing early detection biomarkers and possible treatments to halt the progression of the disease. The work involved activating the pancreatic cancer oncogene called Kras and then selectively mutating tumor-suppressor genes such as p53, p16 and Dpc4 in different combinations.

In the mouse model, which Hingorani first developed while at the University of Pennsylvania, the combination of Kras and p53 led to the more deadly form of pancreatic ductal adenocarcinoma. Earlier studies by researchers in Boston also found the same association between Kras and p16. From studies of human cancers, it is known that mutations in Dpc4 can also occur, but they do so late in the course of disease progression. The current study showed that the combination of Kras and an early mutation of Dcp4, in which one copy of the suppressor gene is eliminated, lead to cancer by a different path, beginning with the creation of a distinct class of precancerous lesions in the ductal epithelium called mucinous cystic neoplasms (MCN). This initiates a process that results in the rarer but far less deadly cystic pancreatic cancer.

MCN lesions often are large enough to be detected early by MRI or CT scan and also to cause symptoms. The cells in this cancer also react differently to a key signaling protein, TGFb, which can induce cancer cells to change shape and become more mobile and invasive. It turns out that the cystic pancreatic cancer cells are resistant to these effects of TGFb and these types of cancers are also less likely to invade surrounding tissues and to metastasize, or spread, to other organs. These properties likely contribute to the improved survival seen with this form of the cancer, Hingorani said.

Conversely, the initial lesions that lead to the more common and deadly form of pancreatic ductal adenocarcinoma, called pancreatic epithelial neoplasms, are tiny enough to be undetectable until the disease has progressed to the point where survival is almost nil. Moreover, these cells appear to be highly sensitive to the tumor-promoting properties of TGFb and thereby manifest a more aggressive behavior.

"With accurate animal models of both forms of pancreatic ductal cancers now in hand, it should be possible to unravel the detailed mechanisms behind their distinct behavior and hopefully identify points of vulnerability in the more fatal form to improve survival," Hingorani said.

Dean Forbes | EurekAlert!
Further information:
http://www.fhcrc.org

Further reports about: Hingorani KRAS adenocarcinoma cystic genetic mutation pancreatic pancreatic cancer

More articles from Life Sciences:

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

nachricht Biological signalling processes in intelligent materials
18.07.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Pollen taxi for bacteria

18.07.2018 | Life Sciences

Biological signalling processes in intelligent materials

18.07.2018 | Life Sciences

Study suggests buried Internet infrastructure at risk as sea levels rise

18.07.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>