Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New blood test uses DNA to diagnose prostate cancer

13.03.2007
Scientists at St George’s, University of London, are working on a blood test that uses DNA markers to identify prostate cancer cells that are shed into the bloodstream.

The researchers have demonstrated that by measuring the levels of these markers, not only can an accurate diagnosis of cancer be made, but the stage the cancer has reached – whether it is still localized or already has spread and become metastatic – can be identified.

In addition, certain markers, if switched on, will hopefully give information on how quickly the cancer will develop, and, therefore, when treatment must be introduced.

The current, most widely used method of detecting prostate cancer is the serum Prostate Specific Antigen (PSA) test, which is only 50 per cent accurate. Increased levels of PSA are elevated in non-malignant conditions, such as benign prostatic hyperplasia, prostatitis and even urinary tract infections. This new test, which is able to detect one prostate cancer cell among a sample of 100 million blood cells, is 95 per cent accurate.

... more about:
»PSA »accurate »prostate »prostate cancer

Because of its inaccuracy, most elevated serum PSA results are followed up. This is done using a core needle biopsy. Samples of tissue are removed by inserting a needle through the wall of the rectum into the prostate gland. When pulled out, the needles remove a cylinder of tissue, usually about 1/2-inch long and 1/16-inch across. Up to 12 needles are normally used to ensure the prostate is thoroughly sampled.

After this invasive procedure, tissue samples are sent to a laboratory for analysis, often taking a week or so for results to be confirmed.

Owing to a high serum PSA, some men will invariably have a biopsy in which the result will been negative for prostate cancer. It is hoped that the new test, with its increased accuracy, will encourage men who suspect they have prostate problems to seek medical attention early on, enabling early treatment and leading, hopefully, to less men having prostate biopsies.

The research has been partly funded by Prostate Research Campaign UK. Brigadier John Anderson, Chief Executive of the charity says: “Many men fear seeking medical help, even when they suspect they have prostate problems, for fear that the diagnosis will involve painful and undignified tests. This simple, speedy, non-invasive test means patients need not fear traumatic tests to diagnose prostate cancer. And receiving an accurate diagnosis within days rather than weeks could mean they are treated more quickly and stand a greater chance of total recovery.”

The research has also been funded by the Everard and Mina Goodman Charitable Foundation.

The test is currently at the stage of validation, with further development regarding standardisation and formatting, and could be introduced on to the market next year.

Prostate cancer is increasingly recognised as a major health problem in the UK, being the most commonly diagnosed solid cancer and the most common cause of cancer-related deaths in men. Around 27,000 new cases are diagnosed in the UK each year and there are around 10,000 deaths from prostate cancer each year around the world.

Tamsin Starr | alfa
Further information:
http://www.sgul.ac.uk
http://www.prostate-research.org.uk

Further reports about: PSA accurate prostate prostate cancer

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>