Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein sciences

12.03.2007
Expression and interaction of fluorescently labelled proteins makes living cells glow in different colours: A novel assay allows simultaneous detection of individual proteins and their interactions in living cells

Protein interactions direct cellular functions and their responses to pathogens and are important therapeutic targets. Scientists from the GSF Research Centre for Environment and Health have recently developed a method enabling simultaneous visualization of individual proteins and their interactions in living cells.

This is achieved by engineering the proteins to constantly emit red or blue fluorescent signals and to produce an additional yellow fluorescent signal upon interaction (see image below). Dr. Ruth Brack-Werner, Director of the GSF Institute of Molecular Virology (IMV) explains the decisive advantage of the new approach: “ In previous assays, signals were generated only by interacting proteins, whereas the individual partners remained undetected. However, the absence of signals could not be used to rule out protein interactions since the absence of one or both interaction partners would have the same effect. To overcome this problem Brack-Werner and her team developed the so-called extended bimolecular fluorescence complementation (exBiFC) which allows simultaneous monitoring of individual proteins and their interactions.

Dr. Ruth Brack-Werner, Institute of Molecular Virology of the GSF [300 dpi resolution for print] Photo: private.

... more about:
»Assay »Brack-Werner »HIV »REV »individual

Brack-Werner and her colleagues’ groundbreaking research work focusses on mechanisms that control replication of the human immunodeficiency virus (HIV), which causes AIDS. “HIV replication is based on the interaction of cellular proteins with viral proteins. Interactions involving viral regulatory factors have a direct impact on the amount of virus produced by the HIV host cell”, Brack-Werner explains. “Preventing HIV proteins from interacting with their crucial partners is a promising approach to developing novel therapies.” Therefore the GSF-scientists developed and validated exBiFC with the HIV Rev protein, which is an accelerator of HIV production. Various assays investigating Rev interactions in artificial settings indicate that the activity of Rev depends on the interaction of Rev molecules with each other and with cellular proteins. The latter include Exportin 1, which transports proteins from the nucleus to the cytoplasm and RISP, a modulator of HIV gene expression discovered by the Brack-Werner team in previous studies. Brack-Werner and her team demonstrated that exBIFC allows visualization of interactions of Rev with itself and with Exportin1 and RISP in living cells. In addition they were able to compare the strengths of the interactions of Rev with its partners by analysing the intensities of the signals in cell images.

ExBiFC has a wide range of potential appllications and represents an important tool for the elucidation of protein interaction networks and discovery of novel antiviral factors. Thus exBIFC has an enormous potential in the battle against leading global health problems such as infectious diseases and cancers.

GSF - Forschungszentrum für Umwelt und Gesundheit, Germany
Dept. of Public Affairs
Tel: 0049/89/3187-2460
Fax 0049/89/3187-3324
E-Mail: oea@gsf.de

Heinz Joerg Haury | EurekAlert!
Further information:
http://www.gsf.de

Further reports about: Assay Brack-Werner HIV REV individual

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>