Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant size morphs dramatically as scientists tinker with outer layer

09.03.2007
Jack's magical beans may have produced beanstalks that grew and grew into the sky, but something about normal, run-of-the-mill plants limits their reach upward.

For more than a century, scientists have tried to find out which part of the plant both drives and curbs growth: is it a shoot's outer waxy layer? Its inner layer studded with chloroplasts? Or the vascular system that moves nutrients and water? The answer could have great implications for modern agriculture, which desires a modern magical bean or two.

Now, in the March 8 issue of the journal Nature, researchers in the Plant Biology Laboratory at the Salk Institute for Biological Studies provide the answer. They succeeded in making tiny plants big and big plants tiny by controlling growth signals emanating from the plant's outer layer, its epidermis.

These findings could eventually be used by agronomists to manipulate plant growth pathways to maximize crop yield, or even reduce leaf size or leaf angle in plants that need to be spaced closely together, says the study's lead author, Joanne Chory, Ph.D., professor and director of the Plant Biology Laboratory and investigator with the Howard Hughes Medical Institute.

... more about:
»Arabidopsis »BRI1 »Epidermis »Steroid »dwarf

Chory and her laboratory team have spent years helping to define how a plant "knows" when to grow and when to stop – which is a "big question in developmental biology," she says. For their experiments, they rely on the model system Arabidopsis thaliana, a small plant related to cabbage and mustard whose genome has been decoded. Over the years, the researchers have built up a whole tool kit, learning how to add and subtract genes in order to determine form and function. Among their discoveries is a class of dwarf plants whose size is about one-tenth the size of a single leaf of the full-sized plant.

Over the past decade, Chory's laboratory and others have shown that these dwarf plants are defective in making or responding to a steroid hormone called brassinolide. Among the genes identified was the plant steroid receptor, BRI1 ("bry-one") that is activated by the steroid. The dwarfed Arabidopsis doesn't express BRI1 at all, unlike normal Arabidopsis, which expresses BRI1 on both the outer waxy, protective epidermis (covering the whole leaf and shoot), and the inner sub-epidermal layer, which contains the chloroplasts that conduct photosynthesis.

In the current study, first author Sigal Savaldi-Goldstein, Ph.D., a postdoctoral researcher in the Plant Biology Laboratory, and Charles Peto, an electron microscopy specialist in the Laboratory of Neuronal Structure and Function, conducted a series of experiments that addressed an old debated question: what tissues of the leaf drive or restrict growth? The answer was simple: the epidermis is in control.

They found that when they drive the expression of the BRI1 receptor in the epidermis of a dwarf Arabidopsis, while leaving the sub-epidermal layer as it was (without BRI1 receptors), the tiny plant morphed into a full-sized plant. In the second set of experiments, they used an enzyme to break down the steroid hormones in the epidermis, and found that a normal sized plant shrunk into a dwarf. "These are simple experiments, but it took 10 years of work in order for us to be able to ask this question," Chory says.

"A second remarkable finding from the study is that "cells in the outer layer talk to the cells in the inner layers, telling them when to grow or to stop growing. This communication is very important to the life of a plant, which can't move and so must have a coordinated system to respond to a changing environment," explains Savaldi-Goldstein.

Gina Kirchweger | EurekAlert!
Further information:
http://www.salk.edu

Further reports about: Arabidopsis BRI1 Epidermis Steroid dwarf

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>