Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research suggests that the production of misshaped proteins ...

07.03.2007
- like the ones associated with neurodegenerative diseases – can affect the immune system

The formation of misshaped proteins - a process suggested to be behind neurodegenerative diseases such as Parkinson’s and Alzheimer’s – can affect an important molecule of the immune system (MHC class I) says a group of Portuguese scientists in an article to be published on the 15th March issue of the "Journal of Immunology".

The researchers have been studying Hereditary Hemochromatosis (HH) – which is also associated with a misshaped/misfolded protein – and discovered that the anomalies in MHC class I molecules observed in some HH patients were linked to a mechanism involved in the elimination of aberrant misfolded proteins. The discovery helps to understand better HH, the most common genetic disease among people of North Europeans ancestry, but also raises important questions on possible immune defects and their role in the many disorders associated with anomalous protein production.

HH is caused by mutations in the HFE gene - which regulates the movement of iron into the cells – and is characterised by excessive absorbance and storage of this metal in the body tissues and organs that can lead, if not treated, to organ failure and even death. Additionally, some HH patients can show anomalies in the numbers of lymphocytes whose development is associated with MHC-I molecules (MHC-I) and which are generally crucial to a proper immune response. Recent research has also shown that HH patients can have abnormal MHC class I molecules what helps to explain the other immune defects observed in these patients.

... more about:
»Almeida »HFE »MHC »MHC-I »Sousa »UPR »abnormal »misfolded »mutated

However, the connection between mutated HFE proteins and abnormal MHC-I molecules has remained a mystery until recent research on a virus of the herpes family suggested that a cellular mechanism used to get rid of misfolded proteins could also affect MHC class I. This observation has led Sergio F. de Almeida, Maria de Sousa and colleagues at Porto University and Lisbon University, Portugal to hypothesise that maybe cellular stress, induced by the production of mutated misfolded HFE proteins, could be behind the MHC-I abnormalities found in HH patients.

In fact, proteins after being produced in the nucleus are delivered to their target sites through a system of “channels” where they also undergo through constant quality controls that, if not passed, result in cellular stress and ultimately in the activation of mechanisms to eliminate the abnormal proteins. The unfolded protein response (UPR) is, like the name indicates, one of such mechanisms specifically responsible for the destruction of misshaped/misfolded proteins. And in the herpes virus study UPR also seemed to be able to affect MHC-I expression.

To test the hypothesis that UPR activation was behind the immune alterations observed in HH patients, de Almeida, de Sousa and colleagues used cells expressing MHC-I molecules but no HFE and genetically manipulated them into expressing normal or mutated (misfolded) HFE proteins. The cells were then analysed for MHC-I expression and UPR activation and compared with non-manipulated cells.

It was found that cells that expressed mutated misfolded HFE proteins showed higher levels of UPR and lower MHC-I expression (due to the production of aberrant MHC-I molecules) in comparison with cells with no HFE or cells with normal HFE proteins. Further supporting the link “misfolded HFE - UPR activation - aberrant MHC-I”, blood cells from HH patients were shown to have UPR activated. Finally, the team of researchers blocked UPR in cells with mutated HFE and this led to increased MHC-I expression further confirming the role of UPR activation behind the MHC-I problems. It was also shown that non-specific UPR activation equally affected MHC-I expression suggesting that this effect may occur in any disease where misfolded proteins are produced and is not specific to HFE

De Almeida, de Sousa and colleagues’ results establish for the first time a link between UPR activation in response to protein misfolding and abnormalities in the immune response. Their work helps the understanding of HH, a disease that affects as many as 1 in 200-300 individuals in the world, but also raises new questions for a range of other disorders, including neurodegenerative illnesses, such as Alzheimer’s, prion’s or Parkinson’s disease, and also type II diabetes and some cancers, all of which are known to be associated with misfolded proteins. The question now is to confirm and understand the possible significance of these alterations in other diseases.

Finally, de Almeida, de Sousa and colleagues’ work also might explain the reason why some viruses induce the production of aberrant misfolded proteins in their infected host as this will affect MHC class I molecules, which are crucial in the immune response against viral infections.

Piece researched and written by: Catarina Amorim (catarina.amorim@linacre.ox.ac.uk)

Catarina Amorim | alfa
Further information:
http://www.jimmunol.org/cgi/content/abstract/178/6/3612

Further reports about: Almeida HFE MHC MHC-I Sousa UPR abnormal misfolded mutated

More articles from Life Sciences:

nachricht How molecules teeter in a laser field
18.01.2019 | Forschungsverbund Berlin

nachricht Discovery of enhanced bone growth could lead to new treatments for osteoporosis
18.01.2019 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>