Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research suggests that the production of misshaped proteins ...

07.03.2007
- like the ones associated with neurodegenerative diseases – can affect the immune system

The formation of misshaped proteins - a process suggested to be behind neurodegenerative diseases such as Parkinson’s and Alzheimer’s – can affect an important molecule of the immune system (MHC class I) says a group of Portuguese scientists in an article to be published on the 15th March issue of the "Journal of Immunology".

The researchers have been studying Hereditary Hemochromatosis (HH) – which is also associated with a misshaped/misfolded protein – and discovered that the anomalies in MHC class I molecules observed in some HH patients were linked to a mechanism involved in the elimination of aberrant misfolded proteins. The discovery helps to understand better HH, the most common genetic disease among people of North Europeans ancestry, but also raises important questions on possible immune defects and their role in the many disorders associated with anomalous protein production.

HH is caused by mutations in the HFE gene - which regulates the movement of iron into the cells – and is characterised by excessive absorbance and storage of this metal in the body tissues and organs that can lead, if not treated, to organ failure and even death. Additionally, some HH patients can show anomalies in the numbers of lymphocytes whose development is associated with MHC-I molecules (MHC-I) and which are generally crucial to a proper immune response. Recent research has also shown that HH patients can have abnormal MHC class I molecules what helps to explain the other immune defects observed in these patients.

... more about:
»Almeida »HFE »MHC »MHC-I »Sousa »UPR »abnormal »misfolded »mutated

However, the connection between mutated HFE proteins and abnormal MHC-I molecules has remained a mystery until recent research on a virus of the herpes family suggested that a cellular mechanism used to get rid of misfolded proteins could also affect MHC class I. This observation has led Sergio F. de Almeida, Maria de Sousa and colleagues at Porto University and Lisbon University, Portugal to hypothesise that maybe cellular stress, induced by the production of mutated misfolded HFE proteins, could be behind the MHC-I abnormalities found in HH patients.

In fact, proteins after being produced in the nucleus are delivered to their target sites through a system of “channels” where they also undergo through constant quality controls that, if not passed, result in cellular stress and ultimately in the activation of mechanisms to eliminate the abnormal proteins. The unfolded protein response (UPR) is, like the name indicates, one of such mechanisms specifically responsible for the destruction of misshaped/misfolded proteins. And in the herpes virus study UPR also seemed to be able to affect MHC-I expression.

To test the hypothesis that UPR activation was behind the immune alterations observed in HH patients, de Almeida, de Sousa and colleagues used cells expressing MHC-I molecules but no HFE and genetically manipulated them into expressing normal or mutated (misfolded) HFE proteins. The cells were then analysed for MHC-I expression and UPR activation and compared with non-manipulated cells.

It was found that cells that expressed mutated misfolded HFE proteins showed higher levels of UPR and lower MHC-I expression (due to the production of aberrant MHC-I molecules) in comparison with cells with no HFE or cells with normal HFE proteins. Further supporting the link “misfolded HFE - UPR activation - aberrant MHC-I”, blood cells from HH patients were shown to have UPR activated. Finally, the team of researchers blocked UPR in cells with mutated HFE and this led to increased MHC-I expression further confirming the role of UPR activation behind the MHC-I problems. It was also shown that non-specific UPR activation equally affected MHC-I expression suggesting that this effect may occur in any disease where misfolded proteins are produced and is not specific to HFE

De Almeida, de Sousa and colleagues’ results establish for the first time a link between UPR activation in response to protein misfolding and abnormalities in the immune response. Their work helps the understanding of HH, a disease that affects as many as 1 in 200-300 individuals in the world, but also raises new questions for a range of other disorders, including neurodegenerative illnesses, such as Alzheimer’s, prion’s or Parkinson’s disease, and also type II diabetes and some cancers, all of which are known to be associated with misfolded proteins. The question now is to confirm and understand the possible significance of these alterations in other diseases.

Finally, de Almeida, de Sousa and colleagues’ work also might explain the reason why some viruses induce the production of aberrant misfolded proteins in their infected host as this will affect MHC class I molecules, which are crucial in the immune response against viral infections.

Piece researched and written by: Catarina Amorim (catarina.amorim@linacre.ox.ac.uk)

Catarina Amorim | alfa
Further information:
http://www.jimmunol.org/cgi/content/abstract/178/6/3612

Further reports about: Almeida HFE MHC MHC-I Sousa UPR abnormal misfolded mutated

More articles from Life Sciences:

nachricht Breakthrough in designing a better Salmonella vaccine
25.09.2018 | University of California - Davis

nachricht Proof of Concept: Gene therapy for mitochondrial diseases
25.09.2018 | Max-Planck-Institut für Biologie des Alterns

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hygiene at your fingertips with the new CleanHand Network

The Fraunhofer FEP has been involved in developing processes and equipment for cleaning, sterilization, and surface modification for decades. The CleanHand Network for development of systems and technologies to clean surfaces, materials, and objects was established in May 2018 to bundle the expertise of many partnering organizations. As a partner in the CleanHand Network, Fraunhofer FEP will present the Network and current research topics of the Institute in the field of hygiene and cleaning at the parts2clean trade fair, October 23-25, 2018 in Stuttgart, at the booth of the Fraunhofer Cleaning Technology Alliance (Hall 5, Booth C31).

Test reports and studies on the cleanliness of European motorway rest areas, hotel beds, and outdoor pools increasingly appear in the press, especially during...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Establishing metastasis

25.09.2018 | Health and Medicine

Artificial intelligence to improve drug combination design & personalized medicine

25.09.2018 | Health and Medicine

Small modulator for big data

25.09.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>