Genetic analysis enables personalising of treatment of cancer of the lung and colon and of certain sarcomas

In concrete, the Biotechnology Laboratory team at the University Hospital (University of Navarra), in close collaboration with the Pharmacogenomics laboratory at the Centre for Applied Medical Research (CIMA) of the same University, undertook these analyses predictive of responses to pharmaceutical drugs in patients with cancer of the lung, the colon and certain types of sarcoma.

Research into the mutations of a gene known as EGFR that can be found altered in lung cancer may help to determine the response of a new group of pharmaceutical – the tyrosine quinase inhibitors of the epidermic growth factor receptor. Also, the presence of genetic changes in specific fragments of PDGFR-alfa genes as well a sin the c-kit gene can pinpoint which treatment is likely to be more efficacious in certain gastrointestinal sarcomas. In this respect, the Department of Oncology at the University Hospital (University of Navarra) and the Centre for Applied Medical Research (CIMA) of the same University are collaborating in the identification of these genetic changes based on the study of the tumour prior to the application of treatment in the patient.

We are currently analysing genetic changes which will help us define the parameters needed to interpret what the best set of pharmaceutical drugs might be to act on certain tumours, particularly cancers of the lung, of the colon and sarcomas.

DIn this way, which patients best respond to a specific treatment can be identified. At the same time, we manage to know the toxicity profile that may occur using these medicinal drugs.

Procedure

The procedure consists of a genetic analysis of a blood sample or of the cancerous tissue where the existence of certain mutations or polymorphisms are observed and enable us to predict what drugs are the most suitable for that particular patient. The analysis provides us with information about the most effective therapeutic option against the tumour, as well as what the potential side-effects are of this treatment on the patient. In this way a better therapeutic selection and individualisation for each patient is achieved.

The analysis of certain genetic variants called polymorphisms help to predict an increased toxicity risk due to treatment with certain antineoplasic pharmaceuticals. Providing the most suitable drug to each patient will mean reducing the symptoms of the toxicity – fatigue, digestive indisposition, cutaneous reaction, diarrhoea, vomiting, as well as alterations in the liver and kidney. In this way the patient will have a better quality of life.

A number of research projects undertaken by different teams have confirmed the use of these markers for response and toxicity and their role in drawing up more individualised therapeutic plan.

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Bringing bio-inspired robots to life

Nebraska researcher Eric Markvicka gets NSF CAREER Award to pursue manufacture of novel materials for soft robotics and stretchable electronics. Engineers are increasingly eager to develop robots that mimic the…

Bella moths use poison to attract mates

Scientists are closer to finding out how. Pyrrolizidine alkaloids are as bitter and toxic as they are hard to pronounce. They’re produced by several different types of plants and are…

AI tool creates ‘synthetic’ images of cells

…for enhanced microscopy analysis. Observing individual cells through microscopes can reveal a range of important cell biological phenomena that frequently play a role in human diseases, but the process of…

Partners & Sponsors