Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single genetic defect causes early heart disease

05.03.2007
A team of researchers from the United States and Iran has identified a genetic mutation that causes early onset coronary artery disease in members of a large Iranian family. The genetic mutation leads to heart disease by causing high blood pressure, high blood levels of "bad cholesterol" and diabetes, all risk factors for heart disease. Coronary artery disease is the leading cause of death worldwide.

"Unfortunately, most of the individuals in this family who carried the mutation died in their early fifties from coronary artery disease that resulted in heart attacks and heart failure," said the research team leader, Richard P. Lifton, a Howard Hughes Medical Institute investigator at Yale University School of Medicine. "Our studies identify a single mutation that has quite a large effect on many of the metabolic risk factors for coronary artery disease."

Lifton and his colleagues published their research article in the March 2, 2007, issue of the journal Science. Arya Mani, a cardiologist and member of Lifton’s laboratory at Yale, was first author of the article. The Yale group collaborated on the studies with researchers at Amir Kabir University of Technology, Azad University and The Social Welfare and Rehabilitation Sciences University, all of which are in Tehran, Iran.

The genetic defect is rare, so the discovery by itself will not provide an explanation for the more common forms of coronary artery disease, which are caused by a constellation of factors, said Lifton. However, he said, understanding the molecular nature of this single genetic defect, which is at the root of a familial form of such a complex disease, offers invaluable clues. Researchers may be able to apply that knowledge to improve understanding of what causes the body’s metabolic machinery to malfunction in the more "garden variety" forms of heart disease.

According to Lifton, physicians in Tehran had long been aware of the family’s tragic struggle with early coronary artery disease. In fact, 23 of 28 blood relatives of the first patient identified with this genetic mutation died from coronary artery disease by an average age of 52. The research team obtained medical records and blood samples from all surviving members of the family. The medical records showed that the family members had a characteristic cluster of symptoms called metabolic syndrome. People with this syndrome have hypertension, high blood lipid levels and diabetes, and they are at much higher risk of developing heart disease.

"Dr. Mani identified this family as an example of an extreme outlier of a common disease," said Lifton. "Studying extreme forms of common disease has been a longtime theme in our laboratory." Lifton’s strategy is to pinpoint and analyze the rare genetic traits that cause complex disorders. By understanding the causes of those familial forms of complex diseases such as hypertension, Lifton and others have laid the foundation for identifying the mechanisms that underlie more common forms of the disease.

One of the important features of the Iranian family, Lifton noted, was that affected family members exhibited metabolic syndrome and early coronary artery disease, but unaffected family members were normal. "So this told us that the coronary disease was traveling with this cluster of metabolic risk factors," he said. "Those risk factors were behaving as though they were being transmitted through the family as a single factor."

When the researchers performed a detailed genetic comparison of affected and disease-free family members, they found that a specific segment of chromosome 12 was the most likely genomic hiding place for this unknown factor. In mapping the six genes present on this small chunk of chromosome 12, they found that the gene for LDL receptor-related protein 6 (LRP6) was present in that region of the chromosome.

They immediately focused on LRP6, tipped off in part by an earlier discovery by HHMI investigator Matthew Warman at Children’s Hospital Boston. In 2001, Warman had shown that members of the LRP gene family were important in bone development. "What caught our attention was that multiple people in the Iranian family we were studying had coronary artery disease and unexplained hip fractures at young ages. We had not made much of the hip fractures at the outset, but once we knew that LRP6 was in this small genomic interval that contained the coronary-artery-disease-causing gene, we immediately thought of LRP6 as the likely culprit," said Lifton.

By sequencing the LRP6 gene in affected family members, the scientists found that the mutation caused the substitution of a single amino acid in the protein the gene produced. In contrast, the researchers did not find the mutation when they analyzed large comparison populations of Iranians and Americans. However, the researchers’ statistical analysis of the family members revealed a high correlation between the presence of the mutation, metabolic syndrome, and osteoporosis. In cell culture studies, Dan Wu, a Yale biochemist, found that the mutation compromised how the LRP6 protein functions in the Wnt signaling pathway. Wnt is at the heart of a key metabolic signaling pathway that is important in embryonic development and contributes to an array of normal physiological processes in adults. Lifton emphasized that the compromised Wnt pathway is intriguing and the pathway will likely become an important research target for understanding coronary artery disease.

"For example, now that we know that altered Wnt signaling can lead to multiple components of the metabolic syndrome, this raises the question of whether other mutations in the Wnt signaling pathway—or acquired defects that cause alteration of Wnt pathway activity—might commonly contribute to metabolic syndrome and coronary artery disease," he said.

Basic understanding of how the Wnt pathway malfunctions could lead to new treatments for coronary artery disease. "Although it’s a long way off, we might ultimately develop ways to either disrupt or increase the activity of particular components of the pathway, to prevent development of metabolic syndrome and coronary artery disease," he said.

The discovery that the LRP6 mutation also causes osteoporosis raises the possibility of a linkage with coronary artery disease, said Lifton. "There is emerging recognition that osteoporosis and coronary artery disease occur together more often than expected by chance," he said. "We have now implicated altered activity of the Wnt pathway in development of both coronary artery disease and osteoporosis. So, one can imagine identifying patients with osteoporosis and coronary artery disease as a way of selecting those who might be particularly interesting to investigate for altered Wnt signaling."

Jim Keeley | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>