Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stop and search

25.02.2002


Proteins from the cell’s skeleton make roaming robots.
© SPL


Glowing nanobots map microscopic surfaces.

Unleashing hordes of molecular robots to explore a surface’s terrain can produce maps of microscopic structures and devices with higher resolutions than those produced by conventional microscopes, new research shows.

Each robot has a ’light’ attached to it, allowing its random movements to be tracked around obstacles, through cracks or under overhangs. Adding the paths of hundreds of wandering nanobots together builds up a map of the entire surface1.



To build their nanobots, Viola Vogel and colleagues at the University of Washington in Seattle modified natural molecular machines called microtubules. These are cylinders of a protein called tubulin, stacked like the bricks in a chimney. Normally, they act as scaffolding inside cells, known as the cytoskeleton, which controls cell shape. ’Motor’ proteins called kinesins shuttle materials around cells along the microtubule gangways.

To create self-propelled nanoscale robots, Vogel’s team reversed nature’s arrangement. By fixing kinesin molecules all over a surface, wormlike microtubules propel themselves randomly all over the surface. By attaching a fluorescent dye to the microtubules, the researchers can follow where they go - and where they don’t.

The immobilized kinesin molecules drive microtubules up and down smooth slopes, but they cannot propel them up steep walls because the microtubules are too stiff to bend up a sharp incline. These limits to the tubule’s peregrinations produce a topographical map of surfaces.

Because microtubule nanobots can penetrate holes, cavities and pores, they can reach places that cannot be seen by passively gazing through a microscope. Their progress would still remain visible if the surface is transparent to the light emitted by the probes.

What’s more, Vogel’s team claims, the robots could be designed to investigate specific aspects of a surface, such as regions that are attractive or repulsive to water. This information could help researchers to understand, for example, the structure of porous materials, the architecture of biological tissues, or the shapes of large molecules sitting on a surface.

In principle, nanobots should be able to see features that are less than 50 nanometres (millionths of a millimetre) across. Smaller details - perhaps down to one nanometre - might be visible if smaller ’molecular robots’ are created, the researchers hope.

The time required for the robots to explore the accessible surface fully depends on how many of them there are and on how fast they move (about 250 nm per second for microtubules). The researchers were able to map out their test surface by superimposing 500 images at a rate of one every 5 seconds.


References
Hess, H., Clemmens, J., Howard, J. & Vogel, V. Surface imaging by self-propelled nanoscale probes. Nano Letters 2, 113 - 116, (2002).

PHILIP BALL | © Nature News Service

More articles from Life Sciences:

nachricht New technique for in-cell distance determination
19.03.2019 | Universität Konstanz

nachricht Dalian Coherent Light Source reveals hydroxyl super rotors from water photochemistry
19.03.2019 | Chinese Academy of Sciences Headquarters

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Levitating objects with light

19.03.2019 | Physics and Astronomy

New technique for in-cell distance determination

19.03.2019 | Life Sciences

Stellar cartography

19.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>