Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A first glimpse of the influenza replication machine

26.02.2007
The first 3D structure from a key influenza protein sheds light on transmission of flu between birds and humans

In 1918, 50 million people died during a worldwide influenza pandemic caused by mutation of a bird-specific strain of the influenza virus. Recently H5N1, another highly infectious avian strain has caused outbreaks of bird flu around the world. There is great concern that this virus might also mutate to allow human-to-human transmission and cause another catastrophic pandemic.

Specific mutations in a viral protein, the polymerase, contribute to the ability of the bird virus to jump the species barrier to humans. Researchers from the European Molecular Biology Laboratory (EMBL) in Grenoble and Heidelberg, the Institut de Biologie Structurale (IBS) and the Unit of Virus Host Cell Interactions (UVHCI)*, both in Grenoble, have now produced the first 3-dimensional image of part of this key protein. The study, which is published in the current issue of Nature Structural and Molecular Biology, investigates the structure and function of the protein and sheds light on how polymerase mutations contribute to transmission of avian flu to humans.

Upon infection the influenza virus starts multiplying in the cells of an infected host. The polymerase is crucial in this process because it copies the viral genome and directs the production of its proteins. Interfering with polymerase function would prevent the virus replicating, thereby reducing the spread of the virus and the severity of the infection.

“For many years scientists have tried to understand the flu polymerase and to look for weak points that could be targeted by drugs,” says Darren Hart, whose team participated in the research at EMBL Grenoble. “But no one could get enough protein to analyse its structure. We developed a way to use robots to screen tens of thousands of experimental conditions and discovered a piece of the influenza polymerase that we could work with. It is a small part of the entire protein, but it provides interesting insights into how the protein works and how mutations may affect host range.”

Together with scientists at the IBS they visualized the atomic structure of the protein and discovered a previously overlooked signal that labels it for transport to the human nucleus where the genetic material of the virus is replicated. Cell microscopy studies at EMBL Heidelberg revealed that the human nuclear transport protein, importin alpha, recognises this signal and shuttles the polymerase into the nucleus. To find out how the polymerase and importin interact, Stephen Cusack, head of EMBL Grenoble, and collaborators at the UVHCI, used the high intensity X-ray source of the European Synchrotron Radiation Facility to generate a high-resolution image of the two proteins interacting with each other. The image revealed that mutations known to play a role in the transmission of avian influenza virus to mammals were located within, or close to, this site of interaction. This suggests that mutations may affect the efficiency of nuclear transport and through this the ability of the virus to replicate in different species.

“Interfering with polymerase function could provide new ways to treat or prevent flu,” says Cusack, “but this will require a detailed picture of the rest of the polymerase. This is what we are aiming for in our new FLUPOL project. In a joint effort with other European laboratories, and with financial support by the European Commission, we will explore both structure and function of this key drug target and try to characterise other mutations implicated in bird-to-human transmission.”

* The Unit of Virus Host Cell Interactions is a collaboration of the Centre National de la Recherche Scientifique (CNRS), the Université Joseph-Fourier in Grenoble and EMBL.

Anna-Lynn Wegener | alfa
Further information:
http://www.embl.org/aboutus/news/press/2007/25feb07/index.html

Further reports about: Grenoble Influenza Polymerase Transmission function

More articles from Life Sciences:

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

nachricht Tiny Helpers that Clean Cells
14.08.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

Tiny Helpers that Clean Cells

14.08.2018 | Life Sciences

Algorithm provides early warning system for tracking groundwater contamination

14.08.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>