Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bath toys show strength in numbers

22.02.2002


Floating crescents could self-assemble into circuits


Miniature floating craft can be programmed to move and assemble in complex ways.

Harvard chemists are playing with bath toys. Floating bubble-powered craft designed to attract and repel one another, are helping them model the machinations of groups such as foraging ants, nest-building termites or schools of fish1.

Group dynamics are not always obvious from individuals’ behaviour, but emerge from their interactions. Computer models can simulate such processes. However George Whitesides and his coworkers in Cambridge, Massachusetts hope that using real experimental systems to elicit emergent properties will have a crucial advantage.



They want to exploit the self-organization inherent in their toys’ collective motions. For instance to assemble machines or electronic circuits from components that automatically swim into position.

Whitesides’ team made thin half-moons of water-repelling plastic about the size of a little fingernail. When two discs get near enough on a watery surface their edges attract each other and stick loosely together. Chemically treating some of the plate edges so that they aren’t water-repellent suppresses the attraction. The team tailored the discs to attract and adhere along some edges but not others.

To make these plates self-propel, the researchers fixed a small piece of platinum-covered glass underneath one corner. When they set the discs adrift on the surface of hydrogen peroxide solution, the platinum acted as a catalyst, breaking down the hydrogen peroxide into oxygen gas. The bubbles released propelled the plates over the water surface at speeds of up to 2 cm per second for several hours.

The plates thus derive energy for their motion from their environment instead of carrying a fuel tank. Varying the catalysts or the peroxide concentration varies their speed. The asymmetric position of the platinum engine under each semicircular plate drives them into circulating movements. Which way they twirl depends on which side the engine sits.

If two plates that rotate in the same direction stick together, the assembly also rotates in that direction. If two oppositely rotating plates unite, their tendencies cancel out, and the pair moves more or less in a straight line.

So even in this very simple system a new property - straight-line motion - appears when the rotating individuals get together. "We believe", say the researchers, "that assemblies of tens or hundreds of components may show substantially more complex behaviours".

References
  1. Ismagilov, R. F., Schwartz, A., Bowden, N. & Whitesides, G. M. Autonomous movement and self-assembly. Angewandte Chemie International Edition, 41, 652 - 654, (2002).


PHILIP BALL | Nature News Service

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers watch quantum knots untie

After first reporting the existence of quantum knots, Aalto University & Amherst College researchers now report how the knots behave

A quantum gas can be tied into knots using magnetic fields. Our researchers were the first to produce these knots as part of a collaboration between Aalto...

Im Focus: A cavity leads to a strong interaction between light and matter

Researchers have succeeded in creating an efficient quantum-mechanical light-matter interface using a microscopic cavity. Within this cavity, a single photon is emitted and absorbed up to 10 times by an artificial atom. This opens up new prospects for quantum technology, report physicists at the University of Basel and Ruhr-University Bochum in the journal Nature.

Quantum physics describes photons as light particles. Achieving an interaction between a single photon and a single atom is a huge challenge due to the tiny...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Composite metal foam outperforms aluminum for use in aircraft wings

23.10.2019 | Materials Sciences

Researchers watch quantum knots untie

23.10.2019 | Physics and Astronomy

A technology to transform 2D planes into 3D soft and flexible structures

23.10.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>