UWE scientists find link between wilting plants and impotence

Researchers studying plant behaviour have discovered similarities between the processes preventing plants from wilting and humans from suffering impotence. Data recently published by the University of the West of England shows the same chemical chain of events is involved in both situations – and has led to an understanding of how water loss from plants might be reduced.

This blocking action has parallels with the chemical effect of impotence treatments in humans. Plants lose water through their stomata, small pores surrounded by guard cells, that cover the leaves. The signals governing the opening and closing of a plant`s stomata are closely allied to the way human blood vessels contract and relax to control blood flow.

The key finding of the research concerns the role played by nitric oxide in the closure of the plant`s stomata. Researchers from UWE`s Faculty of Applied Sciences demonstrated this in a series of experiments in which chemicals to `scavenge` nitric oxide or inhibit its action were added. The reaction of the cells could be clearly measured under the microscope. In other tests, fluorescent dyes that react to the presence of nitric oxide were added to show the effect of different `scavengers` on the guard cells under a special confocal microscope.

This discovery could have wide practical implications for developing drought- resistant plants for areas of the world suffering severe water shortages. Possible ways of achieving this include selective breeding or by the addition of agrochemicals acting as a form of Viagra for plants.

“It has been known for some time that a stress hormone called abscisic acid or ABA is activated in plants under certain conditions such as drought,” said lead researcher Dr Steve Neill, of UWE`s Centre for Research in Plant Science.

“What wasn`t clear before was the important role played by nitric oxide. This substance, well-known as a signal molecule in humans, is made in response to ABA and causes the formation of a messenger molecule that acts inside the guard cells. This offers a new opportunity to manipulate a plant`s water requirements which could impact significantly on crop productivity.”

Media Contact

Julia Weston alphagalileo

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors