Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MUHC-led research identifies risk-factor genes for type 2 diabetes

21.02.2007
A new study led by researchers at the McGill University Health Centre (MUHC) has identified four genes that increase the risk of developing type 2 diabetes. This form of diabetes is the most common worldwide and affects nearly 2 million Canadians. In recent years, the prevalence of Type 2 diabetes has increased rapidly. This genetic discovery may help stem this rise.

This genetic study, published today in the journal Nature, was led by MUHC endocrinologist Dr. Rob Sladek at the McGill University and Genome Quebec Innovation Centre together with Dr. Constantin Polychronakos at the MUHC and Dr. Philippe Froguel at the Pasteur Institute (Lille, France). The study also involved scientists at the University of Montreal, Imperial College (London, UK) and the Montreal Diabetes Research Centre.

Sladek and his colleagues systematically searched the entire human genome to identify genes that predispose individuals to developing diabetes. By comparing hundreds of thousands of DNA fragments from patients with diabetes to those from non-diabetic individuals, they discovered that patients who developed diabetes shared common gene variants on chromosomes 8, 10 and 11.

“Of the four genes we have identified, two are involved in the development or function of insulin-secreting cells and one plays a role in the transport of zinc, an important mineral required for the production of insulin,” says Sladek.

... more about:
»Diabetes »Genomics »MUHC »Medicine »Montreal »Proteomics »Quebec

“We used a totally new concept and technology to look for the genes,” says Polychronakos. “It worked very successfully and our findings are proof of principle that these approaches can be used to dissect the genetic component of other complex diseases and, eventually, other complex human traits.”

Type 2 diabetes is the most common form of diabetes in adults and is becoming increasingly common in children. It is caused by the decreased production or effect of insulin, a hormone that is secreted by the pancreas and which regulates the amount of glucose in the blood. It has been known for some time that for Type 2 diabetes is caused by a combination of genetic and lifestyle factors. The group’s new finding helps identify the population at the highest risk of developing this disease.

The research was funded by a grant from Genome Canada and Genome Quebec headed by Dr. Barry I. Posner, professor of Medicine at McGill University and the MUHC; and by a grant from the Canadian Foundation for Innovation to the Montreal Diabetes Research Centre, headed by Dr. Marc Prentki, professor of Medicine at the University of Montreal.

"In the last few years, advances in technology pioneered in Quebec, have made complex genetic analyses, such as those used in this study, possible," stated Genome Quebec President Paul L’Archevêque. "Without these advances an the collaboration between institutes, this research would not have been possible. The experimental approach used in this study, may help lead to the unraveling of other complex genetic diseases."

The Research Institute of the McGill University Health Centre (RI MUHC) is a world-renowned biomedical and health-care hospital research centre. Located in Montreal, Quebec, the institute is the research arm of the MUHC, a university health center affiliated with the Faculty of Medicine at McGill University. The institute supports over 500 researchers, nearly 1000 graduate and post-doctoral students and operates more than 300 laboratories devoted to a broad spectrum of fundamental and clinical research. The Research Institute operates at the forefront of knowledge, innovation and technology and is inextricably linked to the clinical programs of the MUHC, ensuring that patients benefit directly from the latest research-based knowledge. For further details visit: www.muhc.ca/research.

The McGill University Health Centre (MUHC) is a comprehensive academic health institution with an international reputation for excellence in clinical programs, research and teaching. The MUHC is a merger of five teaching hospitals affiliated with the Faculty of Medicine at McGill University––the Montreal Children’s, Montreal General, Royal Victoria, and Montreal Neurological Institute and Hospital, as well as the Montreal Chest Institute. Building on the tradition of medical leadership of the founding hospitals, the goal of the MUHC is to provide patient care based on the most advanced knowledge in the health care field, and to contribute to the development of new knowledge. www.muhc.ca

Génome Québec has the mission to mobilize academic and industrial sectors with regard to genomics and proteomics research. This private non-profit organization invests and manages funds totalling over $380 million from both the private and public sectors. Génome Québec presently manages projects in six major sectors, that of human health, bioinformatics, ethics, the environment, forestry and agricultural sciences. For more details on Génome Québec and genomics, visit out web site at: www.genomequebec.com.

Genome Canada is a private, non-profit corporation, and the primary funding and information source relating to genomics and proteomics in Canada. Its principal goal is to enable Canada to become a world leader in genomics and proteomics research. Its mandate is to develop and implement a national strategy in genomics and proteomics research for the benefit of all Canadians. For this purpose, it has received $600 million in funding from the Canadian government and co-funding from other partners, allowing it to invest a total of $1.4 billion in 115 innovative research projects and technology platforms. To learn more about Genome Canada, please visit our Web site at www.genomecanada.ca.

Christine Zeindler | EurekAlert!
Further information:
http://www.genomecanada.ca

Further reports about: Diabetes Genomics MUHC Medicine Montreal Proteomics Quebec

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>