Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Gateway' gene discovered for brain cancer

16.02.2007
Researchers have discovered that the same genetic regulator that triggers growth of stem cells during brain development also plays a central role in the development of the lethal brain cancer malignant glioma. In experiments on mice with such gliomas, they showed that knocking out the function of a particular regulatory protein, Olig2, almost completely eliminated tumor formation.

The researchers said their findings suggest that targeting Olig2 could offer a potential avenue for treatment that would kill tumor cells without affecting normal tissue.

Dana-Farber Cancer Institute investigators Charles Stiles and David Rowitch and their colleagues reported their findings in the February 15, 2007 issue of the journal Neuron, published by Cell Press.

Olig2 is a "transcription factor"—a protein that regulates the activity of genes. Prior studies had indicated that it plays a central role in enabling neural stem cells to replicate during embryonic brain development. Also, studies have suggested that brain tumors might arise from aberrant neural stem cells or the neural progenitor cells to which they give rise.

... more about:
»Olig2 »brain tumor »discovered »glioma »neural

Analyzing tissue from human gliomas, Stiles, Rowitch, and their colleagues discovered that Olig2 is activated in the stem and progenitor cells found in the tumors. In a mouse model of malignant glioma, they found that knocking out Olig2 function prevented tumor formation in 91 percent of the animals.

Their analysis of the role of Olig2 in both tumor cells and normal neural stem cells revealed that it plays a key role in enabling cell growth. Specifically, they found that Olig2 represses the gene for a cell-replication "brake" called p21, which normally inhibits cell growth. Thus, they concluded that Olig2 is a "unifying feature of normal cell cells and malignant glioma" and a "gateway" gene for brain tumor development.

"Lineage-restricted pathways that regulate brain tumor behavior may represent more specific therapeutic targets with little potential to affect off-target cell types," commented the researchers.

"Brain tumors remain a major cause of cancer-related death despite advances in surgery, imaging, and conventional treatment modalities," they wrote. "This emphasizes the need to develop novel medical strategies based on a comprehensive understanding of the biological mechanisms underlying gliomagenesis."

They wrote that "our findings identify this core transcriptional regulator as an important candidate for antitumor therapeutics." While transcription factors are not generally considered useful targets for anti-cancer drugs, there are multiple ways that Olig2 could be inhibited, as well as ways to target other components of the regulatory pathway by which it exerts its influence on tumor growth, wrote the researchers.

Erin Doonan | EurekAlert!
Further information:
http://www.cell.com

Further reports about: Olig2 brain tumor discovered glioma neural

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>