Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human stem cell transplants mature into neurons and make contacts in rat spinal cord

15.02.2007
Human nerve stem cells transplanted into rats' damaged spinal cords have survived, grown and in some cases connected with the rats' own spinal cord cells in a Johns Hopkins laboratory, overturning the long-held notion that spinal cords won't allow nerve repair.

A report on the experiments will be published online this week at PLoS Medicine and "establishes a new doctrine for regenerative neuroscience," says Vassilis Koliatsos, M.D., associate professor of neuropathology at Johns Hopkins. "The spinal cord, a part of the nervous system that is thought of as incapable of repairing itself, can support the development of transplanted cells," he added.

"We don't yet know whether the connections we've seen can transmit nerve signals to the degree that a rat could be made to walk again," says Koliatsos, "We're still in the proof of concept stage, but we're making progress and we're encouraged."

In their experiments, the scientists gave anesthetized rats a range of spinal cord injuries to lesion or kill motor neurons or performed sham surgeries. They varied experimental conditions to see if the presence or absence of spinal cord lesions had an effect on the survival and maturation of human stem cell grafts. Two weeks after lesion or sham surgery, they injected human neural stem cells into the left side of each rat's spinal cord.

... more about:
»spinal »transplanted

After six months, the team found more than three times the number of human cells than they injected in the damaged cords, meaning the transplanted cells not only survived but divided at least twice to form more cells. Moreover, says Koliatsos, the cells not only grew in the area around the original injection, but also migrated over a much larger spinal cord territory.

Three months after injection, the researchers found evidence that some of the transplanted cells developed into support cells rather than nerve cells, while the majority became mature nerve cells. High-powered microscopic examination showed that these nerve cells appear to have made contacts with the rat's own spinal cord cells.

Audrey Huang | EurekAlert!
Further information:
http://www.jhmi.edu

Further reports about: spinal transplanted

More articles from Life Sciences:

nachricht Bioenergy cropland expansion could be as bad for biodiversity as climate change
11.12.2018 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht How glial cells develop in the brain from neural precursor cells
11.12.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>