Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cleft palate in fetal mice prevented by treating

13.02.2007
Mice engineered to have cleft palates can be rescued in utero by injecting the mothers with a small molecule to correct the defect, say scientists at the Stanford University School of Medicine and Lucile Packard Children's Hospital.

In addition to shedding light on the biology of cleft palate, the research raises hopes that it may one day be possible to prevent many types of human birth defects by using a similar vaccination-type technique in pregnant women likely to have affected fetuses.

"This is a really important baby step that opens the door to the development of fetal therapies," said pediatric craniofacial surgeon Michael Longaker, MD. "Our hope and expectation is that patients at Packard Children's and other institutions will benefit as this basic advance is translated into something that will eventually make a significant difference for this and other birth defects."

Longaker is the senior author of the study, which will be published in the Feb. 11 advance online edition of Nature. The research is the first demonstration that a technique known as chemical genetics ­ in which small molecules are used to modify gene expression or protein activity ­ can reach a fetus when administered to a pregnant animal.

... more about:
»Fetus »Liu »Longaker »fetal »palate

"It's such a cool concept," said Longaker, professor of medicine and a leader in Stanford's Institute for Stem Cell Biology and Regenerative Medicine. "We injected a small molecule into mom, and it goes into the embryo and works. There are tremendous implications to the idea of preventing conditions in unborn patients rather than trying to treat them after birth." Cleft defects are the second-most common birth defect worldwide and affect about one in 2,000 births.

Longaker, who spent several years in fetal surgery working to design surgical approaches for life-threatening defects prior to coming to Stanford, said the concept of noninvasively preventing these defects by treating the mother is something that was unthinkable when he first began his work. "This is a great example of expectations changing as technology evolves," he said.

For this study, co-author and postdoctoral scholar Karen Liu, PhD, used a short amino-acid tag to disrupt the function of a protein called GSK-3 beta. GSK-3 beta function is important in a variety of biological processes, and mice with the tagged protein exhibited many problems in utero, including cleft palates and sternum defects. However, Liu was able to reverse the defects by injecting the pregnant mice with rapamycin­a small molecule that stabilized the tag and restored the protein's function.

In addition to revealing for the first time that GSK-3 beta is important in palate formation, Liu discovered that the technique could be used to identify the specific times during development that the protein's function is required. For example, maternal rapamycin treatment between embryonic days 13.5 and 15 corrected the palate defect, but normal sternal development required functional protein between days 15.5 and 17. It's likely that the same chemical genetic approach could be applied to a variety of proteins and developmental processes to create a series of molecular snapshots of embryogenesis.

"The beauty of the technique is that it nails down the developmental window for various embryonic events," said Longaker. "We don't need to treat the mother long term, but just during the time that the organ or structure is forming."

Although promising, direct human applications of the research will require several key advances: an ability to predict which women are likely to have fetuses with birth defects before the defects occur; knowledge of an effective, small-molecule based therapy that can prevent the defect; and an accurate method of tracking fetal development to allow time-appropriate administration of the therapy.

"Over time, I expect we will have the ability to overcome these obstacles," said Longaker. "This is the true value of having one of the best children's hospitals in the country integrated within a school of medicine renowned for its research capabilities. With interdisciplinary teamwork, we may be able to develop a whole new way to prevent birth defects."

Gerald Crabtree, MD, PhD, professor of pathology and developmental biology, collaborated with Longaker and Liu on the study. Liu is supported by an NIH training program in regenerative medicine that fosters the interdisciplinary collaboration that led to the breakthrough research. "We're putting people together in the sandbox who wouldn't normally be playing together," quipped Longaker about the collaboration.

Krista Conger | EurekAlert!
Further information:
http://www.stanford.edu

Further reports about: Fetus Liu Longaker fetal palate

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>