Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New data supports a non-invasive approach to routine prenatal genetic testing

13.02.2007
Fetal Nucleic Acid Technology offers potential alternative to amniocentesis

Research studies demonstrating the viability of an approach to routinely detect the presence of fetal DNA in a mother's blood to accurately diagnose or rule out genetic defects -- as early as the first trimester -- was presented today at the 27th Annual Meeting of the Society for Maternal-Fetal Medicine being held in San Francisco.

This future diagnostic technology, currently under development at Sequenom, Inc. (Nasdaq: SQNM), shows promise that a universal alternative to such invasive genetic screening procedures as amniocentesis and chorionic villus sampling, may be available in the future.

These implications are important to women with high-risk pregnancies, in that this future non-invasive screening technique will have significant benefit to all expectant mothers, especially on the heels of new guidelines endorsed by the American College of Obstetricians and Gynecologists (ACOG) that call for risk assessment of all pregnancies for fetal chromosomal abnormalities.

... more about:
»RhD »amniocentesis »fetal »non-invasive »prenatal

Previous guidelines recommended testing women 35 years and older using amniocentesis or chorionic villus sampling, both considered invasive procedures that carry risks. ACOG now recommends screening before the 20th week of pregnancy using a less invasive screening option that includes ultrasound in conjunction with the measurement of certain blood hormones.

Invasive techniques involve sampling amniotic fluid that surrounds the baby in the uterus or tissue sampling of the placenta. Sequenom's proprietary Fetal Nucleic Acid Technology, currently being developed, may be applicable to a range of non-invasive prenatal tests that use a mother's blood sample for fetal genetic screening. Sequenom's technology, based in part on the foundational research of Professors Dennis Lo and James Wainscoat while at the University of Oxford, isolates and analyzes circulating fetal nucleic acid from a maternal blood sample.

In the opinion of Dr. Kenneth Moise, Professor of Obstetrics and Gynecology and a specialist in Maternal-Fetal Medicine at Baylor College of Medicine in Houston, Texas, this is a major research breakthrough in prenatal medicine.

"This is potentially one of the biggest steps forward to determine genetic conditions in the fetus. The ability to make an early diagnosis is the key that opens the door for the future treatment of many birth defects before the child is born," says Dr. Moise. "This shows promise as an excellent alternative to amniocentesis and may give expectant parents peace of mind."

Through technology licensing agreements with clinical laboratories, Sequenom expects a non-invasive application of its technology for fetal Rhesus D (RhD) typing to become available in these laboratories beginning in the first half of 2007. Rhesus disease can occur when the blood of the expectant mother is incompatible with her unborn child. According to the Centers for Disease Control and Prevention (CDC), the incidence of hemolytic disease caused by RhD incompatibility in newborns occurs in approximately 1 in 1,000 live born infants. Complications from RhD disease can lead to jaundice, anemia, brain damage, heart failure, and death.

"We are making significant progress in developing our proprietary Fetal Nucleic Acid Technology and anticipate applying our novel approach to multiple prenatal tests such as tests for RhD, cystic fibrosis, Down syndrome, and others," said Dr. Harry Stylli, Sequenom President and Chief Executive Officer. "We believe our technology has great potential to substantially improve the standard of care for all pregnant mothers."

David Schemelia | EurekAlert!
Further information:
http://www.healthstarpr.com

Further reports about: RhD amniocentesis fetal non-invasive prenatal

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>