Tracing the causes of heart failure

Dr. Michael Gotthardt and his co-workers at the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, Germany, together with Professor Hendrikus Granzier from Washington State University in Pullman, USA, have been able to demonstrate that an elastic region of titin, N2B for short, is responsible for this filling process during the relaxing phase of the cardiac cycle, the diastole. The findings of the researchers in Berlin and Pullman have now been published in the Proceedings of the National Academy of Sciences (PNAS).

N2B is only present in cardiac titin and helps adjust the diastole to the heart rate. For example during physical exercise with an increased heart rate, there is less time for the heart muscle to relax and provide enough blood for the next heartbeat, unless the elastic properties of the heart change. Modulating titin based elasticity thus allows the adequate filling of the heart.

To be able to investigate the function of N2B in the heart muscle, the researchers created a knockout model that lacks only this region of the titin-gene. This results in expression of a shorter titin protein with a reduced heart size, and limited filling capacity. A healthy heart compensates such an insufficiency, by beating either faster or stronger. However, without N2B, the elastic properties and consequently relaxation of the heart muscle are disturbed. It is this malfunction that eventually leads to the development of heart disease.

Comprised of almost 30,000 building blocks (amino acids), titin is the biggest protein in humans. Found in the heart and skeletal muscle, it is an important part of the smallest mechanical unit of the muscle, the sarcomere. Only recently, Dr. Gotthardt and his collaborators where able to demonstrate that titin is involved in the contraction of muscles and the related signalling processes.

Media Contact

Barbara Bachtler alfa

More Information:

http://www.mdc-berlin.de

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

“Nanostitches” enable lighter and tougher composite materials

In research that may lead to next-generation airplanes and spacecraft, MIT engineers used carbon nanotubes to prevent cracking in multilayered composites. To save on fuel and reduce aircraft emissions, engineers…

Trash to treasure

Researchers turn metal waste into catalyst for hydrogen. Scientists have found a way to transform metal waste into a highly efficient catalyst to make hydrogen from water, a discovery that…

Real-time detection of infectious disease viruses

… by searching for molecular fingerprinting. A research team consisting of Professor Kyoung-Duck Park and Taeyoung Moon and Huitae Joo, PhD candidates, from the Department of Physics at Pohang University…

Partners & Sponsors