Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient genes used to produce salt-tolerant wheat

06.02.2007
Two recently discovered genes from an ancient wheat variety have led to a major advance in breeding new salt-tolerant varieties.

In a recent set of papers published in the journal Plant Physiology researchers describe the two genes – known as Nax1 and Nax2. The genes work by excluding salt from different parts of the plant: one from the roots, the other from the leaves. The discovery of the two genes is the subject of international patents.

“The two genes originally came from a wheat ancestor, Triticum monococcum,” says research team leader, CSIRO Plant Industry’s Dr Rana Munns. “They were unwittingly crossed into a durum wheat line about 35 years ago and are normally not present in any modern wheat.”

“Over six per cent of the world’s arable land is affected by salinity. Salt tolerant crops can provide farmers with income for remediation, as well as helping to stabilise soil from wind and water erosion.”The project began when the CSIRO team used a highly accurate selection method – based on their understanding of how plants tolerate salt – to identify wheat varieties that could cope with higher salinity. They were particularly interested in the premium-priced durum wheat, which is much more salt-sensitive than bread wheat.

... more about:
»durum »genes »salt-tolerant

“We screened a hundred durum wheats from the Australian Winter Cereals Collection at Tamworth, which contains tens of thousands of wheat types,” Dr Munns says. “Highlighting the fact that the science of plant breeding sometimes relies on an element of good fortune, we were lucky to find the durum variety with the ancient genes straight away, otherwise we might have been looking for years.”

The team used their knowledge of the two genes to construct molecular markers, which are now in use in CSIRO’s wheat breeding program. A durum wheat variety as salt-tolerant as bread wheat is in advanced field trials and could be commercially available in three years. Even better durum wheats are in development and the program has been expanded to include bread wheat.

“Bread wheat is quite tolerant to salt, but we think it too can be improved. Our aim is to eventually produce wheats able, like barley, to grow in highly saline soils,” Dr Munns says.

Over six per cent of the world’s arable land is affected by salinity. Salt tolerant crops can provide farmers with income for remediation, as well as helping to stabilise soil from wind and water erosion.

The research is a collaborative project between CSIRO, the New South Wales Department of Primary Industries, the University of Adelaide and the Australian Centre for Plant Functional Genomics, with support from the Grains Research and Development Corporation (GRDC) and the CRC for Plant-based Management of Dryland Salinity.

Tony Steeper | EurekAlert!
Further information:
http://www.csiro.au/csiro/content/standard/ps2pv.html

Further reports about: durum genes salt-tolerant

More articles from Life Sciences:

nachricht A study demonstrates that p38 protein regulates the formation of new blood vessels
17.07.2019 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht For bacteria, the neighbors co-determine which cell dies first: The physiology of survival
17.07.2019 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Tracking down climate change with radar eyes

17.07.2019 | Earth Sciences

Researchers build transistor-like gate for quantum information processing -- with qudits

17.07.2019 | Information Technology

A new material for the battery of the future, made in UCLouvain

17.07.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>